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Abstract—We propose a novel problem called influence max-
imization for unknown graphs, and propose a heuristic algo-
rithm for the problem. Influence maximization is the problem
of detecting a set of influential nodes in a social network,
which represents social relationships among individuals. Influence
maximization has been actively studied, and several algorithms
have been proposed in the literature. The existing algorithms use
the entire topological structure of a social network. In practice,
however, complete knowledge of the topological structure of a
social network is typically difficult to obtain. We therefore tackle
an influence maximization problem for unknown graphs. As a
solution for this problem, we propose a heuristic algorithm, which
we call IMUG (Influence Maximization for Unknown Graphs).
Through extensive simulations, we show that the proposed algo-
rithm achieves 60–90% of the influence spread of the algorithms
using the entire social network topology, even when only 1–10%
of the social network topology is known. These results indicate
that we can achieve a reasonable influence spread even when
knowledge of the social network topology is severely limited.

Keywords—social network; influence maximization; viral mar-
keting; heuristic algorithm

I. INTRODUCTION

Social media, such as Twitter and Facebook, are increas-
ingly popular worldwide. As of early 2013, 200 million users
were posting over 400 million messages on Twitter each
day [1], and in March 2014 there were 1.28 billion monthly
active users on Facebook [2].

Successful social media platforms are attractive not only for
communication but also for information dissemination and so-
called viral marketing. Social media users share information,
some of which is disseminated to many other users by word-
of-mouth. Such word-of-mouth information diffusion in social
media is regarded as an important mechanism that influences
public opinion and can affect product market share [3].

Detecting influential users is important for effective and
efficient information dissemination and viral marketing in
social media. For instance, suppose that a company develops
a new product and would like to give free samples to social
media users. The company hopes that sample recipients will
post information about the new product, thereby spreading
information about it among a large number of users and
increasing its popularity. There is typically a limited budget
for giving away samples, so giving samples to a small number
of users who can influence many others is important for
marketing success.

Motivated by applications such as viral marketing, influ-
ence maximization algorithms have been actively studied [4-
11]. Influence maximization is a problem to detect a small
set of influential nodes in a social network, which is a
graph representing social relationships among individuals [4-
7]. Given a social network, an influence cascade model, and a
small number k, an influence maximization algorithm aims to
find a set of k influential (seed) nodes in the network such that
the expected number of nodes influenced by the seed nodes is
maximized under the given cascade model [4, 5].

Existing influence maximization algorithms use the entire
topological structure of the social network to detect seed nodes.
For instance, Kempe et al. formulated the influence maximiza-
tion problem as an optimization problem, and proposed an
approximation algorithm to detect seed nodes from a social
network [4]. Chen et al. proposed heuristic algorithms based
on node degrees in social networks [5]. More recently, several
improved approximation algorithms [8-11] and heuristic algo-
rithms [12, 13] have been proposed. All of these algorithms
use the entire topological structure of a social network.

However, complete knowledge of a social network’s topo-
logical structure is typically difficult to obtain [14-16]. Social
networks representing relationships among social media users
are very large, and access to network data is typically limited,
so we can typically only obtain a part of its structure [15, 16].
Even if we expend the time required to gather network data, it
remains difficult to know the current state of highly dynamic
social networks [14].

We therefore tackle the problem of influence maximization
in unknown graphs, and propose a heuristic algorithm for the
problem. Existing influence maximization algorithms assume
that the entire social network topological structure is given. In
contrast, our problem assumes only limited knowledge of the
topological structure, which is obtained by probing (Fig. 1).
We formulate this problem, and propose a heuristic algorithm
called influence maximization for unknown graphs (IMUG)
to solve it. We verify the effectiveness of IMUG through
extensive simulations.

Our main contributions are summarized as follows.

• We address a novel and challenging problem, in which
links between nodes are known from only a small
number of limited probes. This is different from
existing influence maximization problems, and design-
ing efficient algorithms for probing and seed node
selection from limited probing results are challenging
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Fig. 1. An example of probing an unknown network

issues. Tackling this challenging problem is important
for realizing effective influence spread in large social
networks.

• We show that a reasonable solution can be obtained
from limited knowledge of a social network’s topo-
logical structure. Although the proposed algorithm
adopts simple and straightforward approaches, we can
achieve a 60–90% influence spread as compared with
algorithms using the entire social network topology
even when only 1–10% of the social network topology
is known.

The remainder of this paper is organized as follows. In
Section II, we introduce works related to influence maximiza-
tion. In Section III, we formulate the influence maximization
problem for unknown graphs. The proposed IMUG algorithm
is presented in Section IV. Section V outlines experiments
conducted on synthetic networks and real social networks
to evaluate the effectiveness of IMUG. Finally, Section VI
concludes this paper and discusses future work.

II. RELATED WORK

Influence maximization has been actively studied in the
literature [4-7, 17, 18]. The influence maximization problem
of detecting a set of influential individuals was first proposed
by Domingos et al. [6, 7] and formulated as an optimization
problem by Kempe et al. [4]. Since the influence maximization
problem is NP-hard, several approximation algorithms [4, 8-
11] and heuristic algorithms [5, 12, 13] have been proposed.
Recent research aims at designing faster approximation algo-
rithms [8-11] and more effective heuristic algorithms [12, 13]
than the existing ones.

Several related and variant problems have also been stud-
ied. Goyal et al. studied problems that minimize time or
costs for a given size of influence spread [17]. Other re-
lated problems have also been studied, including influence
maximization under multiple and competing influence cas-
cades [18], influence maximization considering diversity of
population [19], time-critical influence maximization [20], and
topic-aware influence maximization [21].

These studies assume that the entire topological structure of
a social network is available for obtaining solutions. However,
as discussed in Section I, it is typically not easy to obtain
complete knowledge of social network topological structures.
We therefore tackle the influence maximization problem for
unknown graphs.

The most closely related work is influence maximization in
dynamic social networks [14]. Zhuang et al. studied influence

maximization for dynamically changing graphs [14]. In their
problem, complete knowledge of the social network’s topo-
logical structure is initially available, but the network changes
dynamically. They assume that the amount of noise in the
network increases as time elapses due to network changes. Our
study is similar to [14] in that both aim to maximize influence
using incomplete information of the network topology. In con-
trast, however, we assume that the social network topological
structure is unknown from the beginning, and only a limited
amount of topology information can be obtained.

Several influence cascade models have been applied to
the influence maximization problem. The independent cascade
(IC) model, the weighted cascade (WC) model, and the linear
threshold (LT) model are each popular and widely used [4]. In
the IC model, each active (influenced) node spreads influence
to its adjacent nodes with a predefined influence spread prob-
ability. In the WC model, each active node spreads influence
to its adjacent nodes with an influence spread probability
determined by its degree. In the LT model, each node becomes
active if the ratio of active nodes among its adjacent nodes
exceeds a predefined threshold.

III. PROBLEM FORMULATION

We propose a problem called influence maximization for
unknown graphs. The original influence maximization problem
is for finding a set of seed nodes in a network such that the
expected number of nodes influenced by the seed nodes is
maximized under a given cascade model in a given social
network. Our problem is similar, but does not assume that the
social network’s topological structure is given; the network
topology is initially unknown, only the number of nodes
is given, and a limited amount of probing is allowed to
obtain a partial structure of the social network. Probing a
node, for instance, corresponds to access via an application
programming interface (API) for obtaining a list of friends of
the target user. We assume multiple rounds in which probing,
seed node selection, and to trigger influence spread from the
selected seed nodes are allowed. Hence, the results of influence
spread and probing in past rounds are available for seed node
selection and further probing. We formulate this problem in
detail below.

Following Chen et al. [5], we study influence spread on an
unweighted, undirected graph G = (V,E). In the initial state,
only the set of nodes V = {v1, . . . , vN} is known, and the
set of links E is unknown. Here, N is the number of nodes in
graph G. Each node in graph G represents a user, and each link
represents a relationship between two users in social media.

We assume R rounds, and that in each round, probing m
nodes, an selecting κ seed nodes, and to trigger influence
spread from the selected κ seed nodes are allowed. Probing
node v obtains a list of nodes adjacent to v. In each round, we
can repeat this probing process m times. We can also select κ
seed nodes. The selected seed nodes become activated, spreads
influence to its adjacent node, and each newly activated (influ-
enced) node recursively repeats the influence spread process
according to a given cascade model. This problem does not
focus on designing an algorithm for a specific cascade model,
and any influence cascade models such as the IC model, the
LT model, and the WC model can be applied to this problem.
We can obtain a list of activated nodes in each round. In what



follows, we call a node that has been activated at least once
active node, and a node that has never been activated inactive
node.

In summary, influence maximization for an unknown graph
involves selecting m nodes to be probed and κ seed nodes for
each round such that the expected number of active nodes
in the Rth round is maximized. When selecting nodes to be
probed, the results of probing and the results of influence
spread in past rounds are available. When selecting seed nodes,
information related to the selection of probed nodes and the
results of probing in the current round are available.

IV. INFLUENCE MAXIMIZATION ALGORITHM FOR
UNKNOWN GRAPHS

As a solution for the influence maximization problem
for unknown graphs, we propose a heuristic algorithm called
IMUG.

The basic ideas of IMUG are (1) greedily probing the
node with the highest expected degree from unprobed nodes,
and (2) greedily selecting the inactive node with the highest
expected degree as a seed node by using the results of past
probing and influence spread. Since we cannot obtain complete
knowledge of the entire topological structure of the graph, we
rely instead on available local information about node degrees.
Since high-degree nodes tend to spread more influence than
low-degree nodes do, and the effectiveness of degree-based
heuristic algorithms have been shown [5], using node degree is
a straightforward approach in situations of limited information.
Note that the degree of each node is not available in the
problem studied here. We therefore estimate each node degree
from the results of past probing.

As a probing strategy, we adopt a biased sampling strategy
called sample edge count (SEC), which is also known as a
snowball sampling strategy [15]. SEC greedily probes the node
with the highest expected degree. Given a set of already probed
nodes D, SEC probes the node v ∈ D with the most links with
nodes in D. Namely, the SEC strategy estimates the expected
degree of node v in the original graph G as the degree of node
v in the induced subgraph of D ∪ {v}, and probes the node
with the highest expected degree [15]. SEC is shown to be
effective at finding hub nodes of large degree in several types
of social network [15]. For each round, we repeat SEC probing
m times.

In the initial state, IMUG estimates each node expected
degree dv as kv (v = 1, 2, · · ·, N), where kv are IMUG
parameters. If some knowledge of node degrees, such as the
average degree, is available in advance, we can determine kv
by using that knowledge. When we have no information about
node degree, a simple option is to set kv to 0.

In each round, IMUG updates the expected degree of each
node by using the results of SEC probing. When node vp is
probed, since the true degree of node vp is known, dvp , which
is the degree of node vp, is fixed to the known true degree.
Moreover, for each node vi adjacent to node vp, since node
vi is revealed to have at least one link (with node vp), dvi ,
which is the expected degree of node vi, is incremented by
one unless the degree of node vi is fixed.

TABLE I. SYMBOLS USED IN THE EXPLANATIONS OF IMUG

G undirected unweighted graph
V set of nodes in graph G
N number of nodes in graph G
R number of rounds
S set of seed nodes
D set of probed nodes
A set of active nodes
Ar set of activated nodes in round r
dv expected degree of node v
kv initial value of dv

vp node to be probed
vs seed node

Algorithm 1 IMUG
1: initialize A = ϕ and D = ϕ
2: for each node v ∈ V do
3: initialize dv = kv
4: end for
5: for r = 1 to R do
6: initialize S = ϕ
7: for 1 .. m do
8: select vp = arg maxv∈V { dv | v ∈ D }
9: D = D ∪ {vp}

10: dvp = actual degree of vp
11: for each neighbor u of vp do
12: du = du + 1 unless u ∈ D
13: end for
14: end for
15: for 1 .. κ do
16: select vs = arg maxv∈V { dv | v ∈ A }
17: S = S ∪ {vs}
18: A = A ∪ {vs}
19: end for
20: output S
21: obtain Ar

22: for each node v ∈ Ar do
23: A = A ∪ {v}
24: end for
25: end for

In each round, IMUG performs as follows. The pseudo-
code of the proposed IMUG is shown in Algorithm 1, and
symbol definitions are given in Table I.

1) Repeat the following procedures m times

a) Select node vp with the highest expected
degree among nodes that have never been
probed

b) Probe node vp to obtain a list of adjacent
nodes

c) Fix the degree of node vp as the number
of its adjacent nodes, and increment by one
the expected degree of each adjacent node vi
unless node vi has been already probed.

2) Rank inactive nodes by sorting them in descending
order of their expected node degree, and select the
top κ nodes in the ranking as seed nodes.

3) Activate the seed nodes, spread influence from them,
and obtain a list of activated nodes in this round.



V. EXPERIMENT

In this section, we extensively evaluate the effectiveness
of IMUG at spreading influence on unknown social networks.
We perform simulation experiments on synthetic networks and
real social networks to examine how much influence can be
spread with limited knowledge of the network topology.

A. Methodology

We use two types of synthetic networks obtained from
popular network generation models, the Erdös–Rényi (ER)
model [22] and the Barabási–Albert (BA) model [23]. The ER
model generates random graphs where the degree distribution
follows a Poisson distribution, and the BA model generates
scale-free graphs where the degree distribution follows a
power-law distribution.

We also use five real social networks: NetHEPT1 [5],
DBLP2 [24], Amazon3 [25], Facebook-small4 [26], and
Facebook-large5 [27]. NetHEPT and DBLP represent co-
authorship among researchers, Amazon represents co-
purchasing relationships among customers of an electronic
commerce site, and Facebook-small and Facebook-large repre-
sent friendships among Facebook users. These are widely used
as benchmark datasets for influence maximization problems [4,
5, 8, 9, 12, 28-31]. Table II summarizes characteristics of
the networks used in the experiment. Directed networks are
converted to undirected networks by simply ignoring the link
direction. Multiple links are also simply ignored.

We perform simulations of influence spread on the intro-
duced synthetic networks and real social networks, and inves-
tigate the number of active nodes in each round. Following [8,
10, 14], we use the IC model as an influence cascade model,
and for influence spread probability we simply use p for all
node pairs and for all rounds. In the IC model, each node is
either activated or non-activated. Selected seed nodes become
activated, and each activated node vi spreads influence to its
adjacent node vj with a probability p if node vj is non-
activated in the current round. Each newly activated node
recursively repeats the influence spread process. We assume
that influence spread is independent between rounds. Namely,
in each round each node may be activated and may spread
influence to its neighbors regardless of whether the node was
activated in a past round. We run simulations 100 times and
take the average number of active nodes in each round. Note
that active node is a node that has been activated at least once.
For simulations of the ER and BA networks, we generate a
network with the models for each simulation run.

Since influence maximization for unknown graphs is a
new problem, we compare IMUG with naive approaches
and an existing algorithm using the entire network topology.
Specifically, the following algorithms are compared:

• DegreeDiscountIC: A heuristic algorithm shown to
be effective when the network topology is completely
known [5].

1http://research.microsoft.com/enus/people/weic/graphdata.zip
2http://snap.stanford.edu/data/com-DBLP.html
3http://snap.stanford.edu/data/amazon0302.html
4http://snap.stanford.edu/data/egonets-Facebook.html
5http://socialnetworks.mpi-sws.org/data-wosn2009.html

• random: A naive algorithm that randomly selects κ
seed nodes from inactive nodes in each round without
using knowledge of the network topology.

• random-degree: An improved naive algorithm that
randomly probes m nodes from unprobed nodes and
selects κ seed nodes with highest degree from already
probed inactive nodes in each round.

Following [14], we chose DegreeDiscountIC as a comparison
algorithm from among the effective algorithms [5, 8-13]. Note
that DegreeDiscountIC is not designed to select seed nodes in
each round, so in the simulation of DegreeDiscountIC we first
select Rκ seed nodes and rank them using DegreeDiscountIC.
Then in each round we activate κ nodes in the ranked order.

In the following simulation results, we used kv = 0 (v =
1, 2, · · ·, N) as IMUG parameters, assuming that knowledge
of the network topology is not available in advance. Unless
explicitly stated, we used R = 100 as the number of rounds,
κ = 1 as the number of seed nodes for each round, and m =
⌈0.001N⌉ as the number of nodes to be probed for each round,
where N is the number of nodes in graph G.

B. Results and Discussion

We first investigate the effectiveness of IMUG for spread-
ing influence on the synthetic networks (ER and BA). Figure 2
shows the number of active nodes in each round for the ER and
BA networks when the influence spread probability p = 0.01.
Note that DegreeDiscountIC uses the entire network topology,
IMUG and random-degree only use information obtained from
probing m nodes in each round, and random does not use
network topology.

Figure 2 shows that IMUG achieves reasonable influence
spread despite IMUG having only limited network topol-
ogy knowledge. Particularly in earlier rounds (i.e., when the
number of seed nodes is small), IMUG achieves compara-
ble influence spread with DegreeDiscountIC, which uses the
entire network topology. We find that random-degree also
achieves influence spread comparable with DegreeDiscountIC
and IMUG on the ER network. This is due to the degree
distribution of the ER network, where node degrees are highly
similar. In contrast, IMUG achieves a larger influence spread
on the BA network than do the naive algorithms (random-
degree and random) because the BA network has hub nodes
with significantly large degrees. IMUG can successfully find
such hub nodes with SEC probing, which improves the influ-
ence spread of IMUG over that of the naive algorithms. IMUG
is thus expected to be an effective algorithm for influence
maximization on unknown networks with hub nodes.

We next investigate the influence spread of each algorithm
on synthetic networks when the influence spread probability
p = 0.1 (Fig. 3). These results show that all algorithms in-
cluding IMUG achieve large influence spread, and differences
in influence spread among the algorithms when p = 0.1 are
smaller than those when p = 0.01. Similar results, where the
influence spread is not so sensitive to different algorithms when
relatively large influence spread probability, are also reported
in [4, 5]. The cause of this has been explained by the existence
of a connected giant component after removing every edge
with probability 1− p [4, 5].



TABLE II. CHARACTERISTICS OF NETWORKS (VALUES FOR ER AND BA ARE AVERAGED FOR 100 DIFFERENT NETWORKS)

ER BA NetHEPT DBLP Amazon Facebook-small Facebook-large
Number of nodes 10, 000 10, 000 15, 233 317, 083 262, 114 4, 039 63, 731
Number of links 250, 000 250, 000 58, 891 1049, 870 1234, 881 88, 234 1545, 686
Average degree 50 50 7.732 6.622 9.423 43.691 48.507
Standard deviation of degree 6.999 96.090 14.153 10.008 5.919 52.414 75.817
Coefficient of variation of degree 0.140 1.922 1.830 1.511 0.628 1.200 1.563
Clustering coefficient 0.005 0.065 0.429 0.732 0.202 0.617 0.059
Average path length 2.771 2.644 5.840 6.792 8.831 3.693 4.322
Degree assortativity coefficient [32] 0.0001 −0.058 0.389 0.267 −0.002 0.064 0.177
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Fig. 2. Active nodes in each round on synthetic networks (influence spread
probability: p = 0.01)
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Fig. 3. Active nodes in each round on synthetic networks (influence spread
probability: p = 0.1)

We next investigate the effectiveness of IMUG on real
social networks. Many real social networks are known to have
hub nodes [23, 33], which suggests that IMUG would be effec-
tive. However, real social networks have several characteristics
that synthetic networks do not, such as small average path
length, high clustering coefficients, and degree assortativity
(see Table II). These characteristics may affect the performance
of IMUG, so we perform simulations on several real social
networks. Figure 4 shows the number of active nodes in each
round for five real social networks when the influence spread
probability p = 0.01.

Figure 4 shows that IMUG achieves a larger influence
spread than naive algorithms on most real social networks, and
achieves comparable influence spread with DegreeDiscountIC,
particularly on NetHEPT, DBLP, and Amazon. On Facebook-
large and Facebook-small, the differences of influence spread
between IMUG and DegreeDiscountIC are larger than those
on other networks, which suggests room for improvement of
IMUG. However, this does not indicate that IMUG is inef-
fective on these networks, since IMUG only uses very limited
knowledge of network topology. For instance, in the 50th round
IMUG only probes 5% of network nodes. IMUG achieves
reasonable influence spread on these networks, considering its
limited knowledge. Influence spread can be increased when
more information about the network topology is available.
We investigate the effects of the number of probed nodes on
influence spread later in this section.

Figure 4(d) also shows that random-degree outperforms

IMUG on Facebook-small. We need a more detailed investiga-
tion to reveal the cause of this, but it might be explained by the
high average degree and relatively low coefficient of variation
of degree in Facebook-small. In Facebook-small, there are
many nodes with large degree (suggesting fewer nodes with
small degree), so random probing may find high-degree nodes
from a wider range of networks than does SEC probing, which
may result in a larger influence spread under random-degree
than IMUG. This suggests that IMUG can be improved by
combining a random jump strategy with the SEC strategy when
probing networks like Facebook-small. Such improvement of
IMUG is an important area for future work.

Comparing algorithms that do not use the entire network
topology, we see that our strategy of selecting high-degree
nodes as seed nodes and probes nodes with high expected de-
gree is effective. IMUG and random-degree significantly out-
perform random, which indicates the effectiveness of selecting
high-degree nodes as seed nodes. We can observe significant
differences between random-degree and IMUG, particularly on
DBLP and Amazon, which indicates the effectiveness of the
SEC as a probing strategy. The SEC strategy helps us to find
hub nodes efficiently, and this leads more active nodes.

We next investigate the influence spread of each algorithm
when the influence spread probability p = 0.1. Figure 5 shows
the number of active nodes in each round on the five real social
networks.

These results again show that reasonable influence spread
can be achieved with very limited knowledge of the network
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Fig. 4. Active nodes in each round on real social networks (influence spread
probability: p = 0.01)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0  10  20  30  40  50  60  70  80  90  100

av
era

ge
 nu

mb
er 

of 
ac

tive
 no

de
s

round r

IMUG
random

random-degree
DegreeDiscountIC

(a) NetHEPT

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  10  20  30  40  50  60  70  80  90 100

av
era

ge
 nu

mb
er 

of 
ac

tive
 no

de
s

round r

IMUG
random

random-degree
DegreeDiscountIC

(b) DBLP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  10  20  30  40  50  60  70  80  90 100

av
era

ge
 nu

mb
er 

of 
ac

tive
 no

de
s

round r

IMUG
random

random-degree
DegreeDiscountIC

(c) Amazon

 2000
 2200
 2400
 2600
 2800
 3000
 3200
 3400
 3600
 3800
 4000
 4200

 0  10  20  30  40  50  60  70  80  90  100

av
era

ge
 nu

mb
er 

of 
ac

tive
 no

de
s

round r

IMUG
random

random-degree
DegreeDiscountIC

(d) Facebook-small

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 0  10  20  30  40  50  60  70  80  90 100

av
era

ge
 nu

mb
er 

of 
ac

tive
 no

de
s

round r

IMUG
random

random-degree
DegreeDiscountIC

(e) Facebook-large

Fig. 5. Active nodes in each round on real social networks (influence spread
probability: p = 0.1)



topology. IMUG outperforms naive algorithms on most net-
works. However, contrary to the results on synthetic networks,
differences in influence spread between IMUG and DegreeD-
iscountIC when p = 0.1 are larger than those when p = 0.01
particularly on NetHEPT, DBLP, and Amazon. This suggests
that these real social networks do not have giant components
after removing every edge with probability 1 − p even when
p = 0.1. Moreover, when the influence spread probability is
large, small differences in seed node degree significantly affect
the size of influence spread. Therefore, DegreeDiscountIC
using global knowledge of network topology has an advantage
over IMUG. In reality, the influence spread probability is
considered to be not so large, and existing influence maxi-
mization studies often use a low influence spread probability
such as p = 0.01 [5, 14, 28]. Therefore, IMUG in real
situations is expected to achieve comparable performance with
DegreeDiscountIC in most cases.

Finally, we investigate the relation between the amount
of information used for seed node selection and influence
spread. Namely, we investigate influence spread by changing
the number of probed nodes m. Figure 6 shows the relation
between the fraction of probed nodes until a specific round
r to the number of nodes in the graph and the normalized
number of active nodes in the round. The normalized number
of active nodes is defined as the number of active nodes with
IMUG divided by that with DegreeDiscountIC. Note that the
number of normalized active nodes can be greater than 1
since DegreeDiscountIC is a heuristic and not an optimization
algorithm.

These figures also show that in the previous results probing
only 1–10% of nodes in the networks is sufficient for IMUG to
achieve comparable influence spread with DegreeDiscountIC
on NetHEPT, DBLP, and Amazon. For instance, approximately
90% of the influence spread of DegreeDiscountIC is achieved
only from 10%, 5%, and 10% probing at the 10th, 50th, and
100th rounds, respectively.

On Facebook-small, the influence spread of IMUG in-
creases with the number of probed nodes. Approximately 70–
80% of the influence spread of DegreeDiscountIC is achieved
by probing only 10–20% of nodes in the network.

On Facebook-large, the normalized number of active nodes
is smaller than those on other networks, indicating that there
is still room for improvement in IMUG. As already discussed
in this section, one improvement may be combining random
jumps with the SEC strategy and probing a wider range of the
network. Although IMUG still has room for improvement, the
influence spread with IMUG is considered to be reasonable.
Looking at the (not normalized) number of active nodes,
IMUG influences approximately 10,000 nodes (out of 63,731)
with 100 seed nodes and probing 10% of the nodes in the
network. This result may be enough when performing a viral-
marketing campaign in practical situations.

From the above results, while the proposed IMUG has
still room for improvement, we find that a reasonable influ-
ence spread can be achieved with surprisingly little probing.
Specifically, IMUG achieves 60–90% of the influence spread
of DegreeDiscountIC by probing only 1–10% of the nodes in a
network. In real social networks, we can reach hub nodes with
a small amount of probing due to the so-called small-world

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1  2  3  4  5  6  7  8  9  10

IMU
G /

 DD
IC

fraction of probed nodes until round 10 [%]

NetHEPT
DBLP

Amazon
Facebook-small
Facebook-large

(a) r = 10 round

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 5  10  15  20  25  30  35  40  45  50

IMU
G /

 DD
IC

fraction of probed nodes until round 50 [%]

NetHEPT
DBLP

Amazon

Facebook-small
Facebook-large

(b) r = 50 round

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 10  20  30  40  50  60  70  80  90  100

IMU
G /

 DD
IC

fraction of probed nodes until round 100 [%]

NetHEPT
DBLP

Amazon
Facebook-small
Facebook-large

(c) r = 100 round

Fig. 6. Fraction of probed nodes until a specific round r vs. the number
of active nodes in round r normalized by the number of active nodes with
DegreeDiscountIC (influence spread probability: p = 0.01)

phenomenon [34], which allows a large influence spread with
a small amount of probing.

VI. CONCLUSION AND FUTURE WORK

We proposed a novel problem called influence maximiza-
tion for unknown graphs, and also proposed a heuristic algo-
rithm, which we call IMUG, to address the problem. Unlike the
original influence maximization problem, the entire topological
structure of the social network is not given, and only limited
knowledge of the topological structure is obtained through
probing. We investigated the effectiveness of IMUG through
extensive simulations, and results indicated that IMUG is effec-
tive for influence maximization on unknown social networks.
Specifically, we have shown that IMUG achieves 60–90% of
the influence spread of algorithms using the entire network
topology by probing only 1–10% of the network nodes. Al-
though we adopt simple and straightforward approaches in the
algorithm, our results show that the straightforward algorithm
achieves reasonable influence spread even when knowledge of
the social network topology is severely limited. Our findings
should be positive and important for practitioners conducting
viral marketing on large social networks.

Since our current algorithm is simple and straightforward
we plan to improve IMUG, for instance by incorporating past
influence spread results in seed node selection and probing,
and by using a random jump strategy for probing areas
of interest. Investigating the effectiveness of the improved



IMUG for influence spread on larger-scale social networks
is also important future work. Moreover, we are planning to
investigate the effectiveness of IMUG under other influence
cascade models than the IC model. We are also interested in
considering the problem where the number of seed nodes and
the number of nodes to be probed can be changed for each
round.
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