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Abstract. Research on network analysis, which is used to analyze large-scale
and complex networks such as social networks, protein networks, and brain func-
tion networks, has been actively pursued. Typically, the networks used for net-
work analyses will contain multiple errors because it is not easy to accurately
and completely identify the nodes to be analyzed and the appropriate relation-
ships among them. In this paper, we analyze the robustness of centrality measure,
which is widely used in network analyses, against missing nodes, missing links,
and false links. We focus on the stability of node rankings based on degree cen-
trality, and derive Topm and Overlapm, which evaluate the robustness of node
rankings. Through extensive simulations, we show the validity of our analysis,
and suggest that our model can be used to analyze the robustness of not only de-
gree centrality but also other types of centrality measures. Moreover, by using our
analytical models, we examine the robustness of degree centrality against random
errors in graphs.

1 Introduction

Research on network analysis, which is used to analyze large-scale and complex net-
works such as social networks, protein networks, and brain function networks, has been
actively pursued [1,6,8,20–22]. In network analysis, relationships among entities in the
real world are represented by a graph. In social network analysis (SNA), individuals are
represented as nodes in a graph, and the social ties among them, such as similarities,
social relations, interactions, and flows, are represented as links [6, 22]. In brain func-
tion network analysis, brain regions are represented as nodes, and temporal correlations
in activity among them are represented as links [20].

Among various indices proposed for network analysis, centrality measures (e.g.,
degree centrality, betweenness centrality, closeness centrality, and eigenvector central-
ity) [4, 11] have been widely used in actual analyses [3, 5, 25]. Centrality measures are
indices that express the influence of one node on others, and such measures have been
used for various purposes, such as discovering which person plays a central role in a
community [3, 5] and inferring which brain regions are important for the task of inter-
est [25].

Typically, the graphs used for network analyses will contain multiple errors because
it is not easy to accurately and completely identify the entities to be analyzed and the ap-
propriate relationships among them [7, 9, 14–16, 19]. For instance, graphs used in SNA



can contain several errors of different types, such as missing nodes, missing links, and
false links. In traditional SNA, graphs are generated from the results of questionnaires,
and so non-responses and inaccurate answers will cause such errors [24]. Even in recent
SNA used for analyzing online social networks, such errors can be present due to sam-
pling bias and restrictions on social network data, which is typically accessed by means
of application programming interfaces. In biological network analyses, such as analy-
ses of protein interaction networks and gene regulatory networks, graphs often contain
errors such as missing links and false links as a result of measurement errors [19, 23].

Several analyses on the robustness of centrality measures used for network analyses
against errors in the graphs (simulated as noise created by random addition and deletion
of nodes and links) have been performed [7,9,12–17,19]. In [7,16], how centrality mea-
sures of nodes in networks are affected by the random addition and deletion of nodes
and links is experimentally investigated. Robustness of centrality measures against link
weight noises has also been experimentally investigated, such as in [13, 17].

Most existing studies use an experimental approach to understand the robustness of
centrality measures, but some recent studies adopt a theoretical approach. Ghoshal et
al. [12] analyze node-ranking stability based on the PageRank algorithm against ran-
dom rewiring of links. Platig et al. [19] develop an analytical model to quantify the
robustness of degree centrality against link errors (i.e., missing links and false links).
They derive correlation coefficients r between the degree measures of the ground-truth
graph and those of graphs with errors.

Our study builds on prior work and contributes to developing an analytical model
that can be used to quantify the robustness of centrality measures. Since one of the
most typical errors in network analysis is missing nodes [7,9,24], we extend the model
of [19] to include these, and analyze the robustness of degree centrality against missing
nodes as well as against missing links and false links. As discussed in the previous
works [7,19], centrality measures are used mainly for node ranking. We therefore focus
on the stability of node ranking and derive Topm and Overlapm, which evaluate the
robustness of node rankings [7, 16, 17, 19]. Through extensive simulations, we show
the validity of our analysis. Moreover, by using our analytical models, we examine the
robustness of centrality measures against random errors in graphs.

The remainder of this paper is organized as follows. Section 2 introduces related
work. In Section 3, we analyze the robustness of degree centrality against three types of
errors (i.e., missing nodes, missing links, and false links). Section 4 examines the valid-
ity of our analysis through comparison between numerical examples of our analysis and
results of simulations, and also discusses the robustness of centrality measures against
random errors in graphs. Finally, Section 5 contains our conclusions and a discussion
of future work.

2 Related Work

Most existing studies use a simulation to understand the robustness of centrality mea-
sures by adding errors to a ground-truth graph and investigating the relation between
the centrality measures of the ground-truth graph and those of the graphs with er-
rors [7, 9, 14–16]. In contrast, some recent studies use a theoretical approach [12, 19].



Ghoshal et al. [12] analytically derive the conditions under which node ranking accord-
ing to PageRank is stable against random rewiring of links. Platig et al. [19] investigate
the robustness of centrality measures against link errors (i.e., missing links and false
links) through simulations and theoretical analysis. In their analysis, the correlation co-
efficients r of degree centrality between a ground-truth graph and graphs with errors are
derived.

The only type of error studied in Ghoshal et al. [12] is link rewiring, and typi-
cal errors such as node and link addition and deletion are not considered. Platig et
al. [19] investigate the robustness of centrality measures against link errors typical in
network analysis, but the effect of node deletion, which is also a typical error in net-
work analysis [7, 9, 24], is not studied. Moreover, the stability of node ranking based
on centrality measures is investigated in their simulations, but a theoretical analysis of
the node ranking stability is not performed. The correlation coefficients r of central-
ity measures, which are theoretically analyzed in [19], and Topm and Overlapm, which
are studied in this paper, exhibit different tendencies [19]. In this paper, we extend the
model of [19] and use this extended model to analyze the robustness of centrality mea-
sures, as measured by node ranking stability based on degree centrality, against missing
nodes, missing links, and false links.

3 Analysis

We analyze the consistency of node ranking based on degree centrality, comparing an
undirected unweighted graph G = (V,E) with a graph Ge that is a copy of G with ran-
dom errors introduced. We analyze the robustness of degree centrality against three
types of errors, which correspond to the following operations: link deletion, node dele-
tion, and link addition. The link deletion error independently deletes each link of graph
G with probability α ; the node deletion error independently deletes each node in graph
G and all links associated to that node with probability β ; and the link addition error
randomly adds γ |E| links to graph G, where |E| is the number of links in graph G. We
assume that the graph G has an arbitrary degree distribution [18], and that the degree
of each node in graph G (k1,k2, . . . ,k|V |) is known, where |V | is the number of nodes in
graph G.

We rank all the nodes in graphs G and separately in Ge by sorting the nodes in
descending order of their degree centrality, and we analyze the node ranking consis-
tency between graphs G and Ge. We particularly focus on the ranking of highly ranked
nodes, and derive expected values of Topm and Overlapm, which are used to evaluate
the robustness of node ranking. Topm is the probability that the most central node in
graph G is ranked in the top m most central nodes in graph Ge [7, 16, 17]. Overlapm is
the overlap between the top m most central nodes in graph G and those in graph Ge.
More specifically, let Um(G) be the set of the m most central nodes in graph G; then,
Overlapm is defined as |Um(G)∩Um(Ge)|/m [7,16,17,19]. These measures are used in
the simulation studies [7, 16, 17, 19] to evaluate the robustness of centrality measures.
Table 1 shows the definitions of symbols used in this paper.



Table 1. Definitions of symbols used in this paper

G Unweighted undirected graph
Ge Unweighted undirected graph with errors
V Set of nodes in graph G
E Set of links in graph G
ki Degree of a node whose degree is the ith largest in graph G
vi Node whose degree is the ith largest in graph G
Vi Subset of V defined as V −{vi}
α Probability of deleting each link in graph G
β Probability of deleting each node in graph G
γ Ratio of links added to graph G
p(l|k) Probability that a node with degree k in graph G has degree l in graph Ge
P(l|k) Probability that a node with degree k in graph G has degree l or less in graph Ge
P(l|k) Probability that a node with degree k in graph G has degree more than l in graph Ge
ti, j Probability that node vi has the jth largest degree in graph Ge
Topm Probability that node v1 is ranked in the top m most central nodes in graph Ge
Overlapm Overlap between the top m most central nodes in graph G and those in graph Ge

Let p(l|k) be the probability that a node with degree k in graph G has degree l in
graph Ge. We derive Topm and Overlapm by using p(l|k). In what follows, vi denotes a
node whose degree is the ith largest in graph G, and ki denotes the degree of node vi.

To obtain Topm and Overlapm, we first obtain the probability that node vi has the
jth largest degree in graph Ge, which is denoted as ti, j. First, let us consider ti,1, which
is the probability that node vi has the largest degree in graph Ge. Node vi has the largest
degree in graph Ge if and only if the degree of each node is less than or equal to ki, and
therefore ti,1 is given by

ti,1 =
|V |−1

∑
l=0

p(l|ki)∏
r ̸=i

P(l|kr), (1)

where P(l|k) is the probability that a node with degree k in graph G has degree l or less
in graph Ge; this is given by the following equation.

P(l|k) =
l

∑
s=0

p(s|k) (2)

Next, let us consider the case with j > 1. Node vi has the jth largest degree in graph
Ge if and only if ( j − 1) nodes have a higher degree than node vi in graph Ge and all
other nodes have a weakly lower degree than node vi. Here, we define the following
symbols.

P(l|k) = 1−P(l|k) (3)

Q(l,ki,S) =

{
P(l|ki) vi ∈ S ⊂V
P(l|ki) otherwise

(4)

Vi = V −{vi} (5)



Then, ti, j is given by

ti, j =
|V |−1

∑
l=0

p(l|ki) ∑
X∈( Vi

j−1)
∏
r ̸=i

Q(l,kr,X), (6)

where
(Vi

K

)
is the set of all subsets of Vi which have a given size K.

Topm is the sum of the probability that node v1 has the largest degree in graph Ge,
the probability that node v1 has the second largest degree in graph Ge, . . ., and the
probability that node v1 has the mth largest degree in graph Ge. Symbolically,

Topm =
m

∑
j=1

t1, j. (7)

Additionally, we define Ti, j as follows.

Ti, j =
j

∑
s=1

ti,s (8)

Since the expected number of overlapping nodes between the top m most central nodes
in graph G and those in graph Ge is ∑m

i=1 Ti,m, Overlapm is then given by

Overlapm =
∑m

i=1 Ti,m
m . (9)

We next derive p(l|k), the probability that a node with degree k in graph G has
degree l in graph Ge.

First, let us consider the case with link deletion. A node with degree k in graph
G has degree l in graph Ge if and only if (k− l) links are deleted from the node. The
probability distribution of the number of deleted links follows the binomial distribution,
and therefore, as also shown in [19], the probability that a node with degree k in graph
G has degree l in graph Ge is given by

pD(l|k) =
(

k
k− l

)
(1−α)lαk−l . (10)

Next, let us consider the case with node deletion. In this case, similarly to the case
with link deletion, the probability that s links are deleted from a node with degree k
follows the binomial distribution. Hence, the probability that a node with degree k in
graph G has degree l in graph Ge is given by

pv(l|k) =

{
(1−β )

( k
k−l

)
(1−β )lβ k−l l > 0

β +(1−β )β k l = 0.
(11)

Next, let us consider the case with link addition. The probability that s links are
added to a node with degree k is approximated by the Poisson distribution when the
number of nodes |V | is sufficiently large. Hence, as shown in [19], the probability that
a node with degree k in graph G has degree l in graph Ge is approximated by

pa(l|k)≃
ul−k

(l − k)!
e−u, (12)



where u is the average number of added links per node, and is defined as u = 2|E|γ/|V |.
Next, let us consider the case with both link deletion and link addition. The proba-

bility that a node with degree k in graph G has degree l in graph Ge is derived in [19],
and given by

pda(l|k) = ∑
r

ure−u

r!

(
k

k+ r− l

)
(1−α)l−rαk+r−l . (13)

Finally, we consider the case with all of link deletion, link addition, and node dele-
tion. A node with degree k in graph G has degree l in graph Ge if and only if r links are
added, s adjacent nodes are deleted, and (k+ r− s− l) links are deleted from the node.
Hence, combining Eqs. (11) and (13), the probability that a node with degree k in graph
G has degree l in graph Ge is given by the following equation.

p(l|k) =


(1−β )∑r

ure−u

r! ∑s
(k

s

)
(1−β )k−sβ s

×
( k−s

k+r−s−l

)
(1−α)l−rαk+r−s−l l > 0

β+
(1−β )e−u ∑s

(k
s

)
(1−β )k−sβ sαk−s l = 0

(14)

Note that we can also obtain a correlation coefficient r between degrees in graph G
and those in graph Ge by using Eq. (14) and the model in [19].

4 Numerical Examples and Simulation Results

In this section, we examine the validity of our analysis by comparison between numer-
ical examples of our analysis and the results of simulations. Moreover, we also discuss
the effects of missing nodes, missing links, and false links on node rankings that are
based on degree centrality.

As the ground-truth graph G, we use random graphs generated with the ER (Erdös–
Rényi) model [10] and scale-free graphs generated with the BA (Barabási–Albert)
model [2]. The number of nodes is 200, and the average degree of a node is 5 in the
ER model and 2 in the BA model. In our simulations, we obtain graph Ge by deleting
each link with probability α , deleting each node with probability β , and adding γ |E|
links between randomly selected pairs of unlinked nodes. For each graph G, we ob-
tain 200 graphs for Ge, and calculate Topm and Overlapm. We generate 100 different
initial graphs G, and obtain averages of Topm and Overlapm. We also obtain Topm and
Overlapm by using our analytical models from degrees of nodes in graph G and the
parameters α , β , and γ . In what follows, lines in the figures represent the results of
analysis, and dots represent results of simulation.

We first investigate Topm and Overlapm when only a single type of error is contained
in the graphs. Namely, we obtain Topm and Overlapm while two of α , β , and γ are fixed
at 0 and the other parameter is changed. Figures 1, 2, and 3 show the results when
changing α , β , and γ , respectively; Top1, Top3, and Overlap3 are used to characterize
the results. From these results, we can confirm that the results of analysis are in good
agreement with the simulation results. These results show the validity of our analysis.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

T
op

1
link deletion probability α

ER
BA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

T
op

3

link deletion probability α

ER
BA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

O
ve

rla
p3

link deletion probability α

ER
BA

Fig. 1. Link deletion probability α vs. Top1, Top3, and Overlap3
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Fig. 2. Node deletion probability β vs. Top1, Top3, and Overlap3

We next investigate Topm and Overlapm when multiple types of errors are contained
in graphs. We focus on two cases: a case with both missing links and false links, and
a case with missing links and missing nodes. A typical example of the first case is
the case of constructing protein interaction networks, where measurement error causes
both missing links and false links. A typical example of the latter case is the case of
constructing a social network, where incomplete data causes both missing links and
missing nodes. Figure 4 shows Top1, where errors of both missing links and false links
are contained in graphs, and Fig. 5 shows Top1, where errors of both missing links and
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Fig. 3. Link addition ratio γ vs. Top1, Top3, and Overlap3
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missing nodes are contained in graphs. These figures show that analytical results and
simulation results coincide closely. These results show the validity of our analysis when
multiple types of errors are contained in graphs.

From these results, as previously shown in the simulation studies [7,16,19], we can
observe non-negligible effects of random errors in graphs on node rankings based on de-
gree centrality. Graphs generated according to the BA model are more robust than those
generated according to the ER model, but in the particular case with missing nodes,
Top1, Top3, and Overlap3 decrease almost linearly. Thus, our analysis gives theoretical
confirmation of the results from previous works.

We further analyze the robustness of degree centrality by using analytical models.
We differentiate Top1 with respect to the error rates α , β , and γ , and investigate the
effects of each type of error on the node ranking. Figure 6 shows the derivation of Top1
with respect to the error rates α , β , and γ . These figures show the relation between
an increase in the error rate and a decrease in the accuracy of detecting most central
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Fig. 6. Derivation of Top1 with respect to α , β , and γ: in the panels, one parameter is changed
and the other two parameters are fixed to 0.

node according to degree centrality. From these figures, we can find that, for instance,
in graphs generated from the BA model, a 1% increase in the rate of missing nodes
causes an approximately 2% decrease in Top1 when the node deletion probability is
less than 0.1. Our models reveal the relation between the increase of the error ratio and
the decrease in accuracy of centrality.

Finally, we investigate the robustness of other types of centrality measures (specifi-
cally, betweenness, closeness, and eigenvector centralities) through simulations. Due to
space limitation, we show the results of Overlap3 only. Figures 7 and 8 show Overlap3
of different types of centrality measures when α , β , and γ are changed in the BA model
(Fig. 7) and the ER model (Fig. 8), respectively. For comparison purposes, the analyti-
cal results of Overlap3 of degree centrality are also shown on the graphs.

Figure 7 shows that Overlap3 of the four types of centrality is similar among graphs
generated with the BA model. Figure 8 shows that in the ER model, the magnitudes of
Overlap3 are different, but the curves of Overlap3 are of similar shape for the four types
of centrality measures. We observed (not shown here) that Top1 and Top3 also exhibit
similar tendencies. These results indicate that the four types of centrality measures have
similar robustness, particularly in graphs generated according to the BA model. This
suggests that analytical models of degree centrality can be used to predict the robustness
of other types of centrality measures. The cause of the similar robustness among the
four types of centrality measures can be attributed to the high correlation among the
centrality measures.
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Fig. 7. Overlap3 of the four types of centrality measures (degree, closeness, betweenness, and
eigenvector centralities) in graphs generated according to the BA model: Overlap3 of degree cen-
trality is obtained by our analysis, and values with the other measures are obtained by simulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

O
ve

rla
p3

link deletion probability α

degree
closeness

betweenness
eigenvector

(a) missing links

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

O
ve

rla
p3

node deletion probability β

degree
closeness

betweenness
eigenvector

(b) missing nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

O
ve

rla
p3

link addition ratio γ

degree
closeness

betweenness
eigenvector

(c) false links

Fig. 8. Overlap3 of the four types of centrality measures (degree, closeness, betweenness, and
eigenvector centralities) in graphs generated according to the ER model: Overlap3 of degree cen-
trality is obtained by our analysis, and values with the other measures are obtained by simulation

5 Conclusion and Future Works

We analyzed the robustness of degree centrality against missing nodes, missing links,
and false links. We extended the model of [19], and derived Topm and Overlapm, which
were used to evaluate the robustness of node rankings, and showed the validity of the
analysis. Moreover, through extensive simulations, we showed that the four types of
popular centrality measures (degree, closeness, betweenness, and eigenvector centrali-
ties) exhibit similar robustness, which suggests that our model can be used to analyze
the robustness of not only degree centrality but also other types of centrality measures.

As future work, we plan to analyze the robustness of centrality measures other than
degree centrality. Investigating the effects of other types of errors is also important
future work. This paper focuses on uniform errors, but in actual network analyses, non-
uniform errors arise. As an example, biased sampling is a known cause of non-uniform
errors, and such types of errors are of interest to network researchers.
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