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Abstract In social network analysis, individuals are represented as nodes in a graph, social
ties among them are represented as links, and the strength of the social ties can be expressed
as link weights. However, in social network analyses where the strength of a social tie is
expressed as a link weight, the link weight may be quantized to take only a few discrete
values. In this paper, expressing a continuous value of social tie strength as a few discrete
value is referred to as link weight quantization, and we study the effects of link weight
quantization on centrality measures through simulations and experiments utilizing network
generation models that generate synthetic social networks and real social network datasets.
Our results show that (1) the effects of link weight quantization on the centrality measures
are not significant when determining the most important node in a graph, (2) conversely, a
5–8 quantization level is needed to determine other important nodes, and (3) graphs with a
highly skewed degree distribution or with a high correlation between node degree and link
weights are robust against link weight quantization.

Keywords Social Network · Centrality · Link Weight Quantization · Robustness

1 Introduction

Research on social network analysis has been actively pursued (Watts, 2007; Borgatti et al,
2009). In social network analysis, individuals are represented as nodes in a graph and social
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Fig. 1: An example of link weight quantization: The left graph represents a social network, and the strength of
a social tie is expressed as a continuous value of link weight. The right graph also represents a social
network, but the strength of a social tie is expressed as a few discrete value of link weight. Since
a traditional social network analysis uses questionnaires to obtain the tie strength, the right graph is
used instead of the left graph for the analysis. In this paper, expressing a continuous value of social tie
strength as a few discrete value is referred to as link weight quantization.

ties among them, such as similarities, social relations, interactions, and flows, are repre-
sented as links (Watts, 2007; Borgatti et al, 2009). The strength of the social tie can be
expressed as a link weight. The resulting graph is then analyzed to provide an understanding
of complex social phenomena that involve interactions among a large number of people.

Among various indices proposed for social network analysis, centrality measures (de-
gree centrality, betweenness centrality, closeness centrality, and eigenvector centrality) (Free-
man, 1979; Bonacich, 1972) have been widely used in actual analyses (Borgatti, 2006;
Batallas and Yassine, 2006). Centrality measures are indices that express the influence of
one node on others, and have been used for several purposes, such as discovering a person
who plays a central role in a community (Borgatti, 2006; Batallas and Yassine, 2006), or
inferring activity and leadership levels in a community (Kamei et al, 2008; Tsugawa et al,
2012).

Recently, the use of link weights to express the strength of social ties has become popu-
lar, particularly among researchers studying social networks obtained from communication
logs (Ehrlich and Cataldo, 2012; Cataldo and Ehrlich, 2012; Gómez et al, 2008), and it has
been suggested that using link weights is an effective tool for social network analysis (Op-
sahl et al, 2010; Opsahl and Panzarasa, 2009). By definition, the strength of a social tie is
a “combination of the amount of time, the emotional intensity, the intimacy (mutual con-
fiding) and reciprocal services which characterize the tie” (Granovetter, 1973). Thus, a link
weight representing the tie strength should be continuous.

However, in many traditional social network analyses (Batallas and Yassine, 2006; Costen-
bader and Valente, 2003; Valente et al, 1997), only the existence of a social tie is used and
its strength is ignored. Even in social network analyses where the strength of a social tie is
expressed as a link weight, the link weight may be quantized to take only a few discrete val-
ues (Creswick and Westbrook, 2010; Cross and Parker, 2004) since the strength of a social
tie is generally known from the results of questionnaires given to the participants in the ex-
periments. In this paper, expressing a continuous value of social tie strength as a few discrete
value is referred to as link weight quantization. Figure 1 shows an example of link weight
quantization. Link weight quantization should affect the results of social network analyses.

Several analyses on the robustness of centrality measures used for social network anal-
yses against the imperfections of graphs (i.e., noise due to random addition and deletion of
nodes and links) have been performed (Borgatti et al, 2006; Lee et al, 2006; L.Frantz et al,
2009; Kim and Jeong, 2007; Costenbader and Valente, 2003). However, since unweighted
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graphs are used for the analyses in those studies, effects of ignoring link weight and link
weight quantization on centrality measures have not been explored.

Understanding the effects of link weight quantization on the results of social network
analysis is important. For instance, such understanding would help social network researchers
to know whether using a graph with quantized link weights is enough, or whether using con-
tinuous values of link weights is necessary to answer their research questions.

In this paper, we study, through simulations utilizing network generation models that
generate synthetic social networks, the effects of link weight quantization on the popular
centrality measures (degree, betweenness, closeness, and eigenvector centralities). Follow-
ing (Borgatti et al, 2006; L.Frantz et al, 2009), we perform several simulations to investigate
how centrality measures change when link weights are quantized to take varying numbers
of discrete values. We also perform experiments with real social networks to validate our
simulation results.

The remainder of this paper is organized as follows. Section 2 introduces related work.
In Section 3, the experimental methods are explained. In Sections 4 and 5, we present the
experimental results from network generation models and real social networks, and discuss
the effects of ignoring link weight and link weight quantization on the centrality measures.
Finally, Section 6 contains our conclusions and a discussion of future work.

2 Related Work

Several analyses on the robustness of centrality measures used for social network analyses
against the imperfections of graphs have been performed (Borgatti et al, 2006; Lee et al,
2006; L.Frantz et al, 2009; Kim and Jeong, 2007; Costenbader and Valente, 2003). Borgatti
et al (2006) and L.Frantz et al (2009) investigated how centrality measures of nodes in
networks are affected by the random addition and deletion of nodes and links. Borgatti et al
(2006) show that the accuracy of centrality measures declines smoothly and predictably with
the amount of error. L.Frantz et al (2009) show that the robustness of centrality measures
in a graph is affected by its structural characteristics. However, since unweighted graphs
were used for the analyses in these studies, the effects of ignoring link weight and link
weight quantization on centrality measures have not been explored. Therefore, we study
the effects of link weight quantization on centrality measures through simulations using
weighted graphs.

Recently, the use of link weights for social network analysis has become popular, partic-
ularly among researchers studying social networks obtained from communication logs (Ehrlich
and Cataldo, 2012; Cataldo and Ehrlich, 2012; Gómez et al, 2008). For example, Cataldo and
Ehrlich (2012) investigated the performance of software developers through their centrality
measures in weighted communication networks. On the other hand, several researchers have
proposed to artificially generate link weights in unweighted networks to improve the qual-
ity of community detection (Sun, 2014; Berry et al, 2011; Meo et al, 2012; De Meo et al,
2014; Sun et al, 2013). These studies suggest that using link weights improve social network
analyses. In contrast, Bonacich (1987) claimed that using link weights may not necessarily
lead to better inferences about power and influence. Thus, the amount of benefit we can
gain by using weighted networks with continuous values of link weights compared to un-
weighted graphs or graphs with quantized link weights is still unclear. Therefore, in this
study, we aimed to clarify how much benefit can be gained by using a weighted network
with continuous link weights compared to an unweighted graph or a graph with quantized
link weights.
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3 Methodology

We investigate how centrality measures of nodes differ between a weighted undirected graph
G, in which link weights have continuous values, and a weighted undirected graph Gn,
in which link weights are quantized to take n discrete values, generated from the graph
G. Graph G represents the ground truth social network, which the researchers would like
to analyze, and graph Gn is a quantized graph, which the researchers use for their social
network analyses. By comparing the node rankings between graph G and Gn, we investigate
how centrality measures are affected by link weight quantization. If the node ranking does
not change between graph G and Gn, the centrality measures are considered to be robust,
and in the opposite case, the centrality measures are considered to be not robust.

We randomly generate weighted undirected graphs G using network generation mod-
els. Since there are several definitions of links (i.e., social ties among individuals) in social
network analyses, the topological structures of the graphs used for the analyses are also dif-
ferent from each other. There are several network generation models for unweighted social
networks, but there are not many weighted social network generation models. The following
three generation models are popular and we, therefore, use these models to generate graphs
with different structural characteristics.

– Community Emergence (CE) model (Kumpula et al, 2009)
The CE model is a network generation model that models the formation of community
structure in a social network. A weighted undirected graph generated by the CE model
consists of clusters of nodes, which are densely connected to each other by links with
large weights. Between the clusters are a small number of links with small weights.

– Weighted Evolution (WE) model (Barrat et al, 2004)
The WE model is a network generation model that models the evolution of link weights
and the topology created by the existing link weights. A weighted undirected graph
generated by the WE model has the feature that the distributions of node degree and link
weights follow power laws.

– Weighted Evolving with Community Structure (WECS) model (Li and Chen, 2006)
The WECS model is a network generation model that models the formation of commu-
nity structure in a social network by the evolution of link weights and the formation of
a topology depending on the existing link weights. A weighted undirected graph gener-
ated by WECS model has a cluster structure, a power-law distribution of node degree,
and a power-law distribution of link weights.

For comparison purposes, we also use the weighted undirected graph that is an Erdös -
Rényi (ER) graph with link weights randomly assigned according to the Pareto distribution.
In what follows, we call this model for generating graphs the “Random graph with Random
link weight” (RR) model.

There are two types of quantization approaches: linear and non-linear quantization.
Since the link weight distributions of social networks are generally skewed, a non-linear
approach is expected to be an effective way to reduce quantization errors. In particular, in
social networks representing human communication, link weights follow a power-law dis-
tribution, and the aforementioned models generate such link weight distributions (Kumpula
et al, 2009; Barrat et al, 2004; Li and Chen, 2006). As a representative of the non-linear
quantization approach, we use logarithmic quantization, and for comparison purposes, we
use linear quantization. In linear quantization we divide the range of link weights into n
equal sections, and assign an integer between 1 and n to each section. The integer k associ-
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Fig. 2: An example of calculating weighted degree centrality. (The degree centrality of a node is defined as
the sum of its link weights.)

ated with a weight w is then given by

k = ⌈n× w
wmax

⌉, (1)

where wmax is the maximum link weight in graph G. In logarithmic quantization we divide
the range of link weights into n equal sections after a logarithmic transformation, and assign
an integer between 1 and n to each section. The possible link weights in graph Gn are

w
k
n
max, (2)

for 1 ≤ k ≤ n and the integer k associated with weight w is given by

k = ⌈n× logwmaxw⌉. (3)

We consider four centrality measures for weighted networks: degree centrality (Opsahl
et al, 2010), betweenness centrality (Opsahl et al, 2010), closeness centrality (Opsahl et al,
2010), and eigenvector centrality (Bonacich, 1972). Degree centrality, betweenness central-
ity, and closeness centrality are indices that represent the influence of a node on others based
on its degree, the proportion of shortest paths between all other node pairs passing through
the node, and the shortest path lengths from the node to all other nodes, respectively. Eigen-
vector centrality is an index that represents the influence of a node on others based on the
centrality of adjacent nodes. Figure 2 shows an example of calculating weighted degree cen-
trality in graph G and graph G3. As shown in this figure, node ranking may change when
the link weights are quantized: node B has the highest ranking in terms of degree centrality
in the graph G, which has continuous values of link weights, while node A has the highest
ranking and node B is in 2nd place in the graph G3, in which the link weights are quantized
to take 3 values.

We rank all the nodes in graphs G and Gn by sorting them in descending order of their
centrality measures. Then, we calculate the consistency of node rankings between graphs G
and Gn. Following (Borgatti et al, 2006; L.Frantz et al, 2009), we use Top1, Top3, Top10%,
Overlap10%, and R2as measures of ranking consistency. Topm is 1 if the most central node
in graph G lies in the top m most central nodes in graph Gn, and otherwise it is 0. Topp% is
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Table 1 Parameter of network generation models (p is the probability to generate edges in the ER model,
a and b are the parameters of the Pareto distribution, and other symbols are parameters of the CE, WE, and
WECS models defined in (Kumpula et al, 2009; Barrat et al, 2004; Li and Chen, 2006))

CE model WE model WECS model RR model
δ 1.0 δ 1 M 2 p 0.05
pδ 8.85× 10−3 m 3 m0 3 a 1.5
pd 1× 10−3 α 0.15 b 1
pr 1× 10−3 β 0.1
time step 25,000 η 0.1

m 2

1 if the most central node in graph G lies in the top p% of nodes in graph Gn, and otherwise
it is 0. Overlapp% is defined as follows. Let A be the set of nodes in the top p% of graph
G, and B be the set of nodes in the top p% of graph Gn, then Overlapp% is defined as
|A∩B|
|A∪B| . R

2is the square of the Pearson correlation coefficient between centrality measures
in graph G and those in graph Gn. Topm and Topp% are metrics for quantifying the ranking
stability of the best (i.e., the most important) node, Overlapp% is for highly-ranked nodes,
and R2 is for all nodes. Overlapp% and R2 quantify the stability of broader-range node
rankings than Topm and Topp% do, and therefore, we use them as measuers of broad-
range node ranking consistency. Using the four network generation models, we randomly
generated 2,000 graphs, and calculated the averages and 95% confidence intervals of the
various ranking consistency indices. We perform simulation for varying numbers of nodes
N and densities ρ, but unless explicitly stated, we use graphs with N = 100 and ρ ≃ 0.05.

The parameter values used in the network generation models are shown in Tab. 1. Since
the 95% confidence intervals were sufficiently small in all cases, only the averages of the
ranking consistency indices are shown in the following results.

4 Effects of Link Weight Quantization in Graphs Generated from Network
Generation Models

4.1 Effects of Method for Link Weight Quantization and Quantization Level

First, we investigated how the centrality measures are affected by the method for link weight
quantization (i.e., linear quantization or logarithmic quantization) and the quantization level.

In what follows, we show the results obtained when using the WECS model as the
network generation model and closeness centrality as the centrality measure.

Figure 3 shows the relation between quantization level n and consistency of node rank-
ing (Top1, Top3, Top10%, Overlap10%, and R2) when using linear quantization. Note that
n = 1 is equivalent to ignoring link weight. Figure 4 shows the results for logarithmic
quantization.

Comparison of the results for linear quantization (Fig. 3) and for logarithmic quantiza-
tion (Fig. 4) shows that logarithmic quantization is a more robust method than linear quan-
tization. As we discussed in Section 3, the distribution of link weights of a graph generated
from the WECS model follows a power-law distribution. Hence, the quantization levels can
be more effectively utilized by using logarithmic quantization rather than linear quantization
and, as a result, logarithmic quantization is more robust. More specifically, the quantization
error of logarithmic quantization is smaller than that of linear quantization. A mathematical
explanation is given in Appendix A. This suggests that, in order to use quantization levels
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Fig. 3: The relation between the quantization level n
and the consistency of node ranking (WECS
model, closeness centrality, linear quantiza-
tion)
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and the consistency of node ranking (WECS
model, closeness centrality, logarithmic quan-
tization)

effectively, it is important to design questionnaires appropriately to match the distribution
of link weights in the graph used in the social network analysis.

Moreover, we can see in Fig. 4 that, while all indices measuring node ranking consis-
tency are more than approximately 0.9 when the quantization level is five or more, Top1,
Overlap10%, and R2take small values when the quantization level is less than five. Since
the average value of Top1 is the proportion of times that the most central node in graph G
is also the most central node in graph Gn, the average value of Top1 is naturally smaller
than the averages of Top3 and Top10%. In contrast, Overlap10% and R2are broad-range
ranking consistency indices that do not focus only on the most central node.

These results suggest that the effect of link weight quantization is not so significant
when the purpose of social network analysis is to infer the most central node. However,
these results also suggest that five to eight quantization levels are necessary for determining
both the most central node and broad-range node rankings.

4.2 Effects of Graph Size and Density

We next investigated the effects of the graph size and density on the robustness of centrality
measures against link weight quantization. In what follows, we consider closeness centrality,
the WECS network generation model, and logarithmic quantization.

Figures 5 and Figure 6 show the relation between the quantization level n and Overlap10%

or Top1 for graphs of different sizes.
From Fig. 5, we can see that the differences in Overlap10% among graphs of different

sizes are marginal. On the other hand, Fig. 6 shows that Top1 decreases as the graph size
increases. It is natural to expect that Top1 for a larger graph takes a lower value than for a
smaller graph since it is more difficult to discover the most important node in a larger graph.
We, therefore, expect that the effect of graph size on the robustness of centrality measures
is not significant. Borgatti et al. (Borgatti et al, 2006) report the similar findings that graph
size is only weakly related to the robustness of centrality measures against the addition and
deletion of nodes and links.

Figure 7 shows the relation between the quantization level n and Overlap10% for graphs
with different densities in WECS model.
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From Fig. 7, we can see that differences in Overlap10% among graphs with different
densities are marginal when the quantization level n is larger than one. If link weights are
ignored (i.e., n = 1), the differences in Overlap10% among graphs in different densities
are significant. However, since most social networks are sparse, it is expected that the effect
of graph density on the robustness of centrality measures against link weight quantization
is not significant for actual social network analyses. A similar tendency is observed in other
models.
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4.3 Effects of Graph Structure

Since there are several definitions of links (i.e., social ties among individuals) in social net-
work analyses, the effect of link weight quantization on centrality measures in graphs with
different structural characteristics should be investigated. We, therefore, generated graphs
with different structural characteristics using four network generation models, and investi-
gated the relation between the quantization level n and the consistency of node ranking.

In this investigation, closeness centrality was used as the centrality measure and loga-
rithmic quantization was used as the quantization method.

Figure 8 shows the relation between the quantization level n and the consistency of the
top 10% node ranking, Overlap10%, for graphs produced by the four network generation
models.

While the curves representing relations between quantization level n and Overlap10%

are monotonically increasing regardless of the network generation model, their forms are
significantly different. In particular, the values of Overlap10% when link weights are ig-
nored (n = 1) are significantly different for each model. Furthermore, when we focus on
quantization levels of two or more steps, we find that the four models can be classified into
two categories: models in which the consistency of node rankings does not significantly
decrease (WE and WECS models), and models in which the consistency of node rankings
decreases rapidly (CE and RR models). This observation suggests that the robustness of cen-
trality measures against link weight quantization is significantly affected by the structural
characteristics of graphs rather than the sizes and densities of graphs.

Table 2 shows the averages and standard deviations for various structural characteristics
of graphs and several statistics for the link weights calculated from 2,000 graphs randomly
generated by the four network generation models. The average and standard deviation of the
correlation between node degrees and link weights (i.e., correlation between wi,j , which is
the weight of link (i,j), and the sum of the degrees of nodes i and j) are also shown in Tab. 2.
The modularity of a graph with respect to some division of the graph into subgraphs mea-
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Table 2 The characteristics of graphs produced by four kinds of network generation models (average µ and
standard deviation σ)

CE model WE model WECS model RR model
µ σ µ σ µ σ µ σ

The characteristics of graphs
average degree 5.47 0.42 5.88 0.00 4.07 0.06 4.95 0.38

average shortest path length 3.59 0.29 2.39 0.04 3.44 0.14 3.03 0.18
clustering coefficient (Watts, 2003) 0.38 0.03 0.11 0.01 0.10 0.01 0.05 0.01

modularity (Clauset et al, 2004) 0.81 0.03 0.24 0.02 0.51 0.03 0.59 0.04
skewness of the degree distribution 1.16 0.45 3.62 0.39 2.70 0.48 0.38 0.25
kurtosis of the degree distribution 1.97 2.31 14.0 3.57 8.36 3.86 0.00 0.67

Statistics of the link weights
average 482 68.3 1.98 0.00 3.69 0.46 3.02 1.82

standard deviation 898 190 1.73 0.09 8.69 2.26 8.22 27.2
median 155 27.8 1.37 0.04 1.03 0.16 1.59 0.07

skewness 4.13 1.30 3.47 0.39 5.75 1.29 7.90 3.33
kurtosis 24.8 19.5 14.3 3.67 40.0 19.5 84.1 63.0

maximum of link weights 7618 2988 12.8 1.49 78.3 29.8 110.4 2427.8
correlation coefficient between node degrees and link weights 0.18 0.08 0.57 0.04 0.36 0.07 0.00 0.07

sures how good that division is. The mean and standard deviation of the maximum modular-
ity scores are given from clusterings obtained by using modularity maximization (Clauset
et al, 2004).

Figure 8 and Tab. 2 show that if the skewness of the degree distribution is large and
the correlation between node degrees and link weights is strong in graph G, then graph
G is robust against link weight quantization. Thus, these results suggest that the effect of
link weight quantization on centrality measures depends greatly on the characteristics of
graphs used in social network analyses. It is intuitive that a strong correlation between node
degrees and link weights in a graph results in the robustness of the graph against link weight
quantization, since it is expected that the link weights contain little information in such
graphs. Note that eigenvector centrality is reported to be robust against random link rewiring
in scale-free networks, for which the skewness of the degree distribution is large (Ghoshal
and Barabási, 2011). Moreover, the four centrality measures are also known to be robust
against the random addition and deletion of nodes and links in scale-free networks (L.Frantz
et al, 2009). In a scale-free network, there are nodes with very high degree, and those nodes
tend to have very high centrality regardless of whether the graph has weighted links or not.

To confirm that if the skewness of the degree distribution is large and the correlation
between node degrees and link weights is strong in a graph, then the graph is robust against
link weight quantization, we investigate the relation between the quantization level n and the
consistency of node ranking for graphs in which the correlations between node degrees and
link weights are weakened. We generate such graphs by swapping link weights randomly
in graphs generated by the four network generation models. Figure 9 shows the relation be-
tween the quantization level n and Overlap10% for graphs generated by the WECS model
and for three kinds of graphs in which correlations between node degrees and link weights
are weakened by swapping link weights randomly in graphs generated by the WECS model.
This result shows that if the correlation between node degrees and link weights is strong in a
graph, then the graph is robust against link weight quantization. Figure 10 shows the relation
between the quantization level n and Overlap10% for graphs in which the correlation coeffi-
cient between node degrees and link weights is zero, which were produced by swapping link
weights randomly in graphs generated by the four network generation models. This result
shows that if the skewness of the degree distribution is large in a graph, then the graph is
robust against link weight quantization, even when the correlation coefficient between node
degrees and link weights in graphs is zero.
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These results suggest that graphs with a highly skewed degree distribution or with a high
correlation between node degrees and link weights are robust against link weight quantiza-
tion.
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Fig. 11: The relation between the quantization level n and the consistency of node ranking, Overlap10%, in
graphs produced by the CE model (logarithmic quantization)
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4.4 Effects of the Type of Centrality Measure

We next investigated how the effects of link weight quantization differ among the four types
of centrality measures. Figures 11 and 12 show the relation between the quantization level
n and the consistency of the top 10% node ranking, Overlap10%, for graphs generated by
the CE and WECS models.

Figures 11 and 12 show that the relations between quantization level and node ranking
consistency are quite similar for three of the four types of centrality measures. Hence, as
we discussed in Section 4.3, these results suggest that the effect of link weight quantization
on centrality depends more on the characteristics of the graphs rather than on the type of
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centrality used in social network analysis. The four types of centrality measures also have a
similar robustness against random addition and deletion of nodes and links (Borgatti et al,
2006).

However, Fig. 11 shows that when using eigenvector centrality, the consistency of the
node ranking, Overlap10%, is significantly smaller than for other centrality measures. We
note that the robustness of eigenvector centrality for graphs generated by the RR model is
found to be similar to that for graphs generated by the CE model. Further investigation is
needed to determine the reason why eigenvector centrality is significantly affected by link
weight quantization for graphs generated from the CE and RR models.

4.5 Effects of both Link Weight Quantization and Gaussian Noises

We next investigated the effects of both link weight quantization and link weight noise on
centrality measures. As we discussed in Section 1, the strengths of social ties are generally
known from questionnaires given to the participants in experiments, and it may be difficult
for the participants to accurately recognize the strengths of their social ties. Hence, graphs
used for social network analysis may contain link weight noise which will affect the central-
ity measures.

To investigate the effects of link weight noise, we generated a weighted undirected graph
Gσ , by adding Gaussian noise to each link weight in graph G. More specifically, for each
link weight wi,j in graph G, wi,j is multiplied by η, which is a random variable generated
according to the normal distribution N (1.0, σ2). We then obtain graph Gn by quantizing
link weights of graph Gσ in the way explained in Section 3. Note that if w < 0, we simply
use k = 1. In this investigation, we used closeness centrality, the WECS network generation
model, and logarithmic quantization.

Figure 13 shows the relation between the quantization level n and Overlap10% for
graphs in which link weights have Gaussian noise with standard deviation σ. From this
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figure, we can see that when the amount of noise is not so large (e.g., σ ≤ 0.3), Overlap10%

is comparable to the case with no noise (i.e., σ = 0). The results are similar when we
use other network generation models or any other centrality measure except eigenvector
centrality. A noise level of σ = 0.3 means that approximately 70% of link weights are
multiplied by 0.7 – 1.3. The actual noise level in social network analysis is unknown, but
this result suggests that when the amount of noise is not so large, the effect on the centrality
measures can be considered to be not significant. This is because even if Gaussian noise is
contained in a link weight, both the link weight with the noise and the original link weight
(i.e., the link weight without noise) can take the same value when quantized.

In contrast, we also find that when link weight noise is included, the benefit of increasing
the quantization level is small. The increase of Overlap10% is small even when we use a
much larger quantization level. From this result we suggest that, if the amount of noise is
large, using a 2-3 step quantization level is enough, and using a continuous link weight does
not have much benefit.

5 Effects of Link Weight Quantization in Real Social Networks

5.1 Overview of Real Social Networks

In this section, we perform experiments with real social networks to validate the results
obtained from simulations. We use the following four types of real networks.

– Enron Email Networks (EENs)
An EEN, which is generated from the Enron Email Dataset (Shetty and Adibi, 2004),
represents the frequencies of email communications among 151 employees of the Enron
Corporation from April 2000 through March 2002. Nodes in an EEN are the 151 em-
ployees. An undirected link (i, j) is created if an email communication, detected from
the To, CC, and From fields, exists between employees i and j. The link weight wi,j

is defined to be the number of email messages exchanged between employees i and j.
Since a large number of communication logs are available from the Enron Email Dataset
(252,759 emails), we generated an undirected graph from each monthly email log.

– Online Community Network (OCN)
The OCN, which is generated from log data of messages exchanged in an online com-
munity in which participants are students in the University of California, Irvine (Opsahl
and Panzarasa, 2009), represents the frequencies of communication by direct messaging
among 1,899 students. Nodes in the OCN are the 1,899 students. An undirected link (i,
j) is created if a direct message communication exists between students i and j. The
link weight wi,j is defined to be the number of direct messages exchanged between user
i and j. An undirected graph is generated from all 59,835 messages.

– Forum Network (FN)
The FN, which is generated from log data of messages exchanged in online bulletin
boards in which participants are students in the University of California, Irvine (Opsahl,
2013), represents frequencies of communication in bulletin boards among 899 students.
Nodes in the FN are the 899 students. An undirected link (i, j) is created if a reply
communication exists between students i and j. The link weight wi,j is defined to be
the number of replies in the bulletin boards between users i and j. An undirected graph
is generated from all messages.

– US-AN (US Airport Network)
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Table 3 The characteristics of four real networks (average µ and standard deviation σ are given for EEN
networks).

EEN OCN FN US-AN
µ σ

The characteristics of graphs
number of nodes 94.5 28.4 1899 899 500
average degree 4.33 1.45 14.5 159 11.92

average shortest path length 3.76 0.58 3.05 1.88 2.99
clustering coefficient (Watts, 2003) 0.31 0.10 0.06 0.50 0.35

modularity (Clauset et al, 2004) 0.66 0.10 0.77 0.15 0.28
skewness of the degree distribution 2.16 1.33 4.24 0.78 3.38
kurtosis of the degree distribution 8.54 12.8 25.6 -0.03 12.3

Statistics of the link weights
average 4.63 0.99 4.32 15.6 304640

standard deviation 8.05 2.21 7.95 30.6 440586
median 1.96 0.46 2 7 141045

skewness 4.94 2.30 8.18 10.37 3.18
kurtosis 36.9 36.0 107 232 14.3

maximum of link weights 69.5 32.1 184 1569 4507980
correlation coefficient between node degree and link weights 0.10 0.17 0.07 0.39 0.49

The US-AN, which is generated from the dataset used in (Colizza et al, 2007), represents
relationships among the 500 busiest commercial airports in the United States. Nodes
in the US-AN are the 500 airports. An undirected link (i, j) is created if a flight is
scheduled between airports i and j. The link weight wi,j is defined to be the number of
seats available on the scheduled flights between airports i and j. Since the US-AN is not
a social network, we use this network for comparison purposes.

We use these four types of networks as graph G. We use the quantization methods and
measures of ranking consistency described in Section 3. Table 3 shows the averages of sev-
eral indices for the structural characteristics of the four types of real networks, several statis-
tics for the link weights, and correlations between node degree and link weights. Since we
obtain multiple EEN graphs, the standard deviations and the averages of several statistics
are shown.

5.2 Effects of Quantization Level

Figure 14 shows the relation between quantization level n and consistency of node ranking
(Top1, Top3, Top10%, Overlap10%, and R2) when using closeness centrality and loga-
rithmic quantization. Since multiple graphs of EENs are available, we use EENs as the real
social networks.

We can see from Fig. 14 that while all indices measuring node ranking consistency are
approximately more than 0.9 when the quantization level is ten or larger, all indices except
Top10% take small values when the quantization level is less than five in an EEN. This result
suggests that the effect of link weight quantization is so significant in an EEN that 5 to 10
quantization levels are necessary.

This tendency is similar to the result from WECS model (Fig. 4). However, this result
also suggests that an EEN is less robust than a graph generated by the WECS model. One
possible explanation is given by the skewness of the degree distribution and the correlation
between node degree and link weights in EENs and graphs generated by WECS model.
Both the skewness of degree distribution and the correlation between node degree and link
weights in an EEN are smaller than those of graphs generated by the WECS model (see
Tabs. 2 and 3).
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5.3 Effects of Graph Structure

We finally compare the four types of real networks in order to investigate the effects of graph
structure on the robustness of centrality measures. As shown in Tab. 3, the sizes and densities
are significantly different among the four types of networks. However, we have shown that
the effects of size and density on the robustness of centrality measures are marginal. We
expect that the effects of graph structure can be investigated through comparison of the four
types of networks.

Figure 15 shows the relation between the quantization level n and Overlap10% for four
types of real networks.

Figure 15 shows that while the differences in Overlap10% among the four types of
networks becomes small as the quantization level n increases, the difference is quite large
when the quantization level n is small. In particular, when the quantization level n is 1,
Overlap10% for the US-AN is more than 0.8 while Overlap10% for the other networks is
approximately 0.5 – 0.6.

This result again suggests that the effect of link weight quantization on centrality mea-
sures depends on the characteristics of the graphs. From Tab. 3, we can see that both the
skewness of degree distribution and the correlation between node degrees and link weights
in the US-AN are high. Hence, it is expected that graphs with highly skewed degree distri-
butions or with a high correlation between node degrees and link weights are robust against
link weight quantization.

6 Conclusion and Future Work

The main conclusions of this work can be summarized as follows.

– We found that the effects of link weight quantization on the centrality measures are
not significant when determining the most important node. Top3 and Top10%, which
focus on the accuracy of determining the most important node, are high (above 0.9)



Robustness of centrality measures against link weight quantization 17

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

O
ve

rla
p 1

0%

Quantization level n

US-AN
OCN
EEN

FN

Fig. 15: The relation between the quantization level n and the consistency of the top 10% node ranking,
Overlap10% in four types of real networks (closeness centrality and logarithmic quantization)

in most cases. This suggests that in order to find the most important node, the benefit
of using weighted links is small. For such objectives, questionnaire-based, traditional
social network analysis should be enough.

– In contrast, we also found that a 5–8 quantization level is needed to determine not only
the most important node but also other important nodes. Overlap10%, which measures
broad-range node ranking consistency, takes a small value when the quantization level is
small. Therefore, a relatively higher quantization level of 5–8 steps is necessary to obtain
accurate broad-range node ranking. As another way of accurately obtaining broad-range
node ranking, we suggest the use of continuous link weights for social network analyses
that need broad node rankings. It is possible to obtain continuous values for link weights
by analyzing log data for communications, such as phone calls, emails, and message
exchanges in social media. Such data should be useful for social network analyses.

– Another key finding in this paper is that the robustness of centrality measure is heavily
dependent on the structure of the network. This suggests that when analyzing networks
with highly skewed degree distributions, like the WE model, we need not consider social
tie strength. But in most synthetic and real networks in our experiments, the effect of link
weight quantization is not negligible.

One limitation of this paper is that we only focus on link weight quantization. In more
realistic situations, several types of errors are present in a network. Hence, we are planning
to investigate the robustness of centrality measures in the presence of heterogeneous errors
(e.g., node and link addition or deletion). This research is a first step toward understanding
the effects of errors in link weights. More research is, therefore, needed. For instance, further
investigation of the effects of link weight noise is one important future task.

Another limitation is investigation of the effects of network structure. Characteristics
such as core-periphery distinctions and hierarchies are important characteristics observed in
many types of social networks (Cattani and Ferriani, 2008; Uzzi and Spiro, 2005; Cataldo
and Ehrlich, 2012). However, there are not many models that generate weighted networks,
so we used popular weighted network generation models. As a result, topologies such as
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core-periphery distinctions and hierarchies were not considered in our experiments. Investi-
gating the effects of such structural characteristics on the robustness of centrality measures
is important future work.

One way to obtain several types of topologies, such as core-periphery distinctions and
hierarchies, is to generate unweighted networks, and apply a weighting procedure to gener-
ate artificial link weights for the network (Sun, 2014). However, this approach is new, and
the relation between artificially generated weights and social ties in the real world has not
yet been explored. But, as the relation becomes clearer, we expect that this method will be
used in our experiments. Another way to investigate the effects of network structure is using
various real social networks. Public datasets are available for instance in the the Stanford
Network Analysis Project (SNAP) (Leskovec and Krevl, 2014). Such datasets should be
useful to investigate the effects of network characteristics, and confirm our results.
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Appendix

A Quantization Errors of Linear and Logarithmic Quantization

We derive the quantization errors of linear and logarithmic quantization. Without loss of generality, we as-
sume link weights are distributed over [1,m]. As a representative skewed distribution, we assume link weights
follow a truncated Pareto distribution with probability density function defined as following equation.

p(x) =

{
αx−α−1

1−m−α (1 ≤ x ≤ m)

0 otherwise
(4)

Let n be the quantization level. Then, the expected value of the error of linear quantization is given by

n∑
k=1

∫ 1+
(m−1)

n
k

1+
(m−1)

n
(k−1)

p(x)(1 +
m− 1

n
k − x)dx, (5)

and the expected value of the error of logarithmic quantization is given by

n∑
k=1

∫ m
k
n

m
k−1
n

p(x)(m
k
n − x)dx. (6)

The relation between quantization level n and quantization error is shown in Fig. 16. The relation be-
tween the parameter α and quantization errors is shown in Fig. 17.

These figures show that when the link weight distribution is the truncated Pareto distribution, which is a
skewed distribution, quantization error of logarithmic quantization is smaller than that of linear quantization.
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Fig. 16: Relation between quantization level n and
expected value of quantization error (param-
eter α = 3, maximum link weight m = 10).
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