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• Link addition improves the robustness of multilayer networks against attacks.

• Link addition is more effective in multiplex network than in interdependent network.

• Link-addition strategies based on degree are generally more effective than others.
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Abstract

Recent research trends in network science have shifted from the analysis of single-layer networks to that of multilayer
networks. Two popular multilayer network models exist: interdependent networks and multiplex networks. This pa-
per presents an extensive investigation of the effectiveness of link-addition strategies for improving the robustness of
both interdependent and multiplex networks against degree-based targeted node attacks. The results demonstrate that
link-addition strategies that are effective for interdependent networks are also effective for multiplex networks, sug-
gesting that findings regarding such strategies for interdependent networks are also applicable to multiplex networks.
Furthermore, the results demonstrate that the existing low-degree link-addition strategy for single-layer networks and
its extensions proposed herein are relatively effective among the seven link-addition strategies investigated in this
study.
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1. Introduction

Recent research trends in network science have shifted from the analysis of single-layer networks to that of multi-
layer networks [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. A multilayer network has multiple interacting
layers of networks [2, 3], and many real-world complex systems have multilayer structures [2, 4]. For instance, in an
infrastructure context, water supply systems, transportation systems, and power grids can be viewed as interdepen-
dent networks that compose a multilayer network [4]. Furthermore, the various types of multiple relationships among
people can be viewed as constituting a multilayer network.

Two popular multilayer network models exist: interdependent and multiplex. An interdependent network com-
prises multiple layers (i.e., networks) whose nodes are interdependent [3]; if a node fails in a particular layer, then
nodes in other layers that depend on the failed node will also fail [3, 4]. Meanwhile, a multiplex network is a col-
lection of several network layers that contain the same nodes but with different intralayer connections [3]; in other
words, each node in each layer has exactly one interlayer link with a node in each different layer. Each node in a
layer is called a layer node, and each set of nodes that are connected via an interlayer links is called a multiplex node.
Contrary to the interdependent network, even if a layer node fails in a particular layer, nodes in other layers that have
interlayer links to the failed layer node will not fail in a multiplex network [10].

The robustness of multilayer networks has received significant attention [4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17,
18]. The robustness of a network is its ability to maintain its connectivity against random node failures and intentional
attacks on the network. For many systems defined as multilayer networks, it is desirable for them to maintain their
overall connectivity even when some nodes fail. Consequently, the robustness of multilayer networks has attracted
extensive research interest. Buldyrev et al. demonstrated that an interdependent network can be fragmented by a few
nodes failing in a single layer as a result of cascading failures [4]. Parshani et al. demonstrated that the intersimilarity
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between layers in an interdependent network affects the network’s robustness [11]. Brummit et al. demonstrated that
multiplex networks are generally more vulnerable than simple single-layer networks [6]. Min et al. demonstrated that
the intersimilarity between layers in a multiplex network has a considerable effect on the robustness of such networks
against failures and attacks [8].

Several methods for improving the robustness of interdependent networks have been examined in terms of their
effectiveness [12, 13, 14, 15, 16, 17, 19, 18]. These methods include node protection to improve the robustness against
targeted attacks [19] and increasing node capacities to improve the robustness against cascading failures [18].

To improve the robustness of a network, adding only a few connectivity links to the network appears promising
based on the feasibility demonstrated in actual networks [17]. Ji et al. [17] proposed two link-addition strategies: (i)
random inter degree–degree difference (RIDD) and (ii) low inter degree–degree difference (LIDD). Because interde-
pendent networks with high levels of intersimilarity are known to be robust against random failures of nodes [11],
the aim of both RIDD and LIDD is to increase the intersimilarity between layers through link addition. Ji et al. [17]
demonstrated that both RIDD and LIDD are more effective at improving the robustness of an interdependent network
against random failures than conventional link-addition strategies such as random addition (RA) and low degree (LD).
Wang et al. [20] proposed improved versions of LIDD, RA, and LD and demonstrated their effectiveness.

We herein present a comprehensive evaluation of the effectiveness of several link-addition strategies for improving
the robustness of both multiplex and interdependent networks against targeted node attacks. We investigate the effec-
tiveness of existing link-addition strategies for interdependent networks (i.e., RIDD and LIDD), existing link-addition
strategies for single-layer networks (i.e., LD and RA), and extensions of the aforementioned strategies, which we
refer to as low-degree IDD (LD IDD), low-degree-product IDD (LDP IDD), and low-degree-sum IDD (LDS IDD).
Through extensive simulations, we investigate the effectiveness of these strategies for both interdependent and multi-
plex networks.

Our main contributions are as follows.

• We investigate the effectiveness of link-addition strategies for improving the robustness of interdependent net-
works against targeted attacks. Most previous studies investigated the effectiveness of link-addition strategies
under random failures [17, 20], implying that the effectiveness of link-addition strategies against targeted attacks
remains unclear.

• We investigate the effectiveness of link-addition strategies for improving the robustness of multiplex networks.
Although a multiplex network is a representative model of multilayer networks, most previous studies focused
on only interdependent networks, implying that methods for improving the robustness of multiplex networks
remain limited [21].

• We propose extensions of existing link-addition strategies and investigate their effectiveness. For link addition,
the proposed extensions use the degrees of nodes in each layer (as used in LD) and the intersimilarity between
layers (as used in RIDD and LIDD).

The remainder of this paper is organized as follows. In Section 2, we introduce the definitions and notations
used herein. In Section 3, we describe the link-addition procedures used in this study. In Section 4, we explain the
experimental methodology of our network attack simulation. In Section 5, we present the results and discuss the
simulation. In Section 6, we present our conclusions and describe future work.

2. Definitions and Notation

A multilayer network is denoted asM = (G,C), where G is a set of layers and C is a set of interlayer links [3].
Each layer α is defined as an undirected unweighted network Gα = (Vα, Eα), where Vα and Eα are a set of nodes and
a set of links, respectively. Let Eαβ be a set of interlayer links connecting nodes between layer α and layer β; then, C
is defined as C = {Eαβ ⊆ Vα × Vβ;α, β ∈ {1, . . . ,M};α , β}, where M is the number of layers inM. Interdependent
networks and multiplex networks are special cases of multilayer networks.

An interdependent network exhibits interdependent relationships between different layers [3]. In an interdependent
network, the interlayer link (vαi , v

β
i ) ∈ Eαβ represents node vαi depending on node vβi , and vice versa. In other words, if
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(vαi , v
β
i ) ∈ Eαβ and node vαi (or vβi ) is removed from the network, then vβi (or vαi ) is also removed from the network [4,

17]. Herein, we consider a one-to-one interdependent network (i.e., each node has one and only one interlayer link) [4].
A multiplex network comprises a fixed set of nodes connected by different types of links, and different layers in

a multiplex network represent different types of links [3]. Each node in a layer is called a layer node, and each set
of nodes that are connected via interlayer links is called a multiplex node [10]. Let N be the number of nodes in a
multiplex network, then a set of layer nodes is denoted as Vα = {vα1 , vα2 , . . . , vαN} and a set of multiplex nodes is denoted
as V = {v1, v2, . . . , vN}. Note that vi = {v1

i , v
2
i , . . . , v

M
i }. For any combinations of layers α and β, |Vα| = |Vβ| and

(vαi , v
β
i ) ∈ Eαβ. Two multiplex nodes vi ∈ V and v j ∈ V are considered to be connected if they are connected in at least

one layer [10]. In other words, a set of links connecting multiplex nodes is defined as E = E1 ⊕ E2 ⊕ · · · ⊕ EM .
This study refers to previous studies [8, 10, 17] and considers two-layer networks, in which the two layers are

denoted as GA and GB. Each node in graphs GA and GB is denoted as vA
i (i = 1, . . . ,N) and vB

i (i = 1, . . . ,N),
respectively, and vA

i and vB
i are connected via an interlayer link.

3. Link-addition Strategy

In this section, we introduce the link-addition strategies used in this study. Following [10], we consider the
problem of adding links to two-layer networks. Each link-addition strategy has a fixed budget of M′ links and repeats
the procedure that will be explained later in this section until all M′ of those links have been added. For each link-
addition strategy, (i) self-loop and parallel edges are not allowed and (ii) the degrees of layer nodes are calculated at
each step.

3.1. Link-addition Strategies for Single-layer Networks
LD, in which links are added between low-degree nodes, is a popular link-addition strategy for single-layer net-

works [22]. Moreover, RA [23, 24], in which links are added at random, is often used as a reference for comparison
with other link-addition strategies. The detailed procedures of LD and RA are as follows.

LD. At each step, the degrees of all the nodes in GA and GB are calculated. In both GA and GB, a link is added
between a pair of unconnected nodes with the lowest degrees.

RA. In both GA and GB, a link is added between a randomly selected pair of unconnected nodes.
Although a link addition strategy that adds links to high-degree nodes has been studied in [22], we do not use

such strategies in this study. Such high-degree-based link-addition strategies are expected to be ineffective under the
degree-based targeted node attack studied herein as the additional links added by the high-degree-based link-addition
strategies are always removed by the attacker.

3.2. Link-addition Strategies Using IDD
Ji et al. [17] proposed the RIDD and LIDD link-addition strategies, in which links are added based on the IDD,

which is defined as the degree difference between two interconnecting nodes. Because it has been shown that networks
with high intersimilarities (i.e., networks with low average inter degree–degree difference (AIDD)) are robust against
random failures, both strategies are aimed at reducing the AIDD, which is calculated as the average absolute IDD per
node in an interdependent network [17]. Let u and v be nodes in graphs GA and GB, respectively, where u has an
interlayer link with v. Then, the IDD of u in GA is defined as IDD(u) = ku − kv, where ku and kv are the degrees of u
and v, respectively. The detailed procedures of RIDD and LIDD are as follows.

RIDD. At each step, the IDD of each node in GA and GB is calculated. For both GA and GB, a link is added between
a pair of nodes selected randomly from the pairs of unconnected nodes with negative IDD. If no pair of nodes has a
negative IDD, then a link is added between randomly selected unconnected nodes.

LIDD. At each step, the IDD of each node in GA and GB is calculated. For both GA and GB, a link is added between
the pair of unconnected nodes with the lowest negative IDD. If no pair of nodes has a negative IDD, then a link is
added between the pair of unconnected nodes with the lowest degree. While RIDD selects a pair of nodes to add a
link randomly from the nodes with negative IDD, LIDD adds a link between the pair of unconnected nodes with the
lowest negative IDD.
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3.3. Link-addition Strategies Using IDD and Degrees of Layer Nodes

We propose three link-addition strategies that consider both the IDD and the degrees of layer nodes: (i) low-degree
IDD (LD IDD), (ii) low-degree-product IDD (LDP IDD), and (iii) low-degree-sum IDD (LDS IDD). Similar to RIDD
and LIDD, LD IDD involves adding links between nodes with negative IDD but with a preference for adding links
to low-degree nodes, such nodes being vulnerable to both attacks and failures [25]. Specifically, low-degree nodes
tend to be isolated during attacks and failures because their connectivity depends heavily on other nodes of higher
degrees. Therefore, LD IDD involves adding links to low-degree nodes while reducing the AIDD in the network.
Note that the LD link-addition strategy for single-layer networks also involves adding links to low-degree nodes [22].
LDP IDD and LDS IDD are variants of LD IDD: LDP IDD uses the layer degree product (i.e., the product of the
degrees of two interconnecting nodes) and LDS IDD uses the layer degree sum (i.e., the sum of degrees of two
interconnecting nodes) instead of using only the degrees of nodes in each layer. The layer degree product is defined
as DP(u) = DP(v) = ku × kv and the degree sum is defined as DS (u) = DS (v) = ku + kv, where ku and kv are the
degrees of interconnecting nodes u and v, respectively. These measures are used to quantify the importance of nodes
in multiplex networks [3, 26].

The detailed procedures of LD IDD, LDP IDD, and LDP IDD are as follows.

LD IDD. At each step, the IDD and the degree of all nodes in both GA and GB are calculated. In both GA and GB, a
link is added between the pair of unconnected nodes with the lowest degree and negative IDD. If no pair of nodes has
a negative IDD, then a link is added between randomly selected unconnected nodes.

LDP IDD. At each step, the IDD and the degree product of all nodes in both GA and GB are calculated. In both GA

and GB, a link is added between the pair of unconnected nodes with the lowest degree product and negative IDD,
except when the degree product is zero. While LD IDD uses the node degree, LDP IDD uses the degree product of a
node. If no pair of nodes has a negative IDD, then a link is added between randomly selected unconnected nodes.

LDS IDD. At each step, the IDD and the degree sum of all nodes in both GA and GB are calculated. In both GA

and GB, a link is added between the pair of unconnected nodes with the lowest degree sum and negative IDD. While
LD IDD uses the node degree, LDS IDD uses the degree sum of a node. If no pair of nodes has a negative IDD, then
a link is added between randomly selected unconnected nodes with the lowest degree sum.

4. Methodology

4.1. Overview

Following [21], we conducted experiments by performing the following steps. 1) Generate a two-layer network
using various network generation models. 2) Add links to both layers of the generated network using the link-
addition strategies described in Section 3. 3) Simulate an attack on the network and investigate the connectivity of the
remaining network. The details of these three steps are explained in the remainder of this section.

4.2. Generating Network

We generate a two-layer networkM by connecting two single-layer networks. We generate two graphs GA and
GB with the same size N. For each node in GA, an interlayer link is created between that node and a randomly selected
node in GB to construct an uncorrelated structure.

We use the following models to generate the single-layer networks: the Barabási–Albert (BA) model [27], com-
munity emergence (CE) model proposed by Kumpula et al. [28], and Erdös–Rényi (ER) model [29]. We generate six
types of multilayer networks: (i) BA–BA network, (ii) CE–CE network, (iii) ER–ER network, (iv) BA–ER network,
(v) CE–BA network, and (vi) CE–ER network. The BA model that generates scale-free networks and the ER model
that generates random networks are popular models used to generate artificial networks. The CE model generates
networks that have a skewed degree distribution and tunable community structure. Although the CE model generates
weighted graphs, we ignore weighting herein and treat the generated graph as an unweighted undirected graph.

We generated 10 two-layer networks. Unless explicitly stated, the number of nodes N = 1, 000 in the following
experiments. We constructed a BA graph with m = 2.0, an ER graph with p = 0.004, and a CE graph with δ = 2.0,
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pδ = 0.004, pr = 0.001, and pd = 0.001. The parameters used to generate the CE and ER graphs were determined
based on values that render the density of the graphs approximately equivalent to that of the BA graph. The number
of links in the BA graph was 1,997, 2,004.8 in the CE graphs, and 2,006.7 in the ER graphs.

4.3. Network Attack Simulation

We simulated a targeted node attack to investigate the robustness of multilayer networks with additional links. We
began by adding M′/2 links to graphs GA and GB based on the link-addition strategies described in Section 3. We
define the fraction of links added to the multilayer network M as fa = M′/(MA + MB), where MA and MB are the
numbers of links for GA and GB, respectively.

Interdependent Networks. For interdependent networks, following [5], we simulated a targeted node attack as follows.

1. Remove N × ϕA nodes from GA in descending order of their degree.
2. Remove nodes that do not belong to the giant component in GA.
3. In GB, remove all nodes that have interlayer links with the nodes removed from GA.
4. Remove nodes that do not belong to the giant component in GB.
5. In GA, remove all nodes that have interlayer links with the nodes removed from GB.
6. Repeat procedures 2–5 while no removed nodes exist in the procedures.

To evaluate the connectivity of interdependent networks after a network attack, we calculated R = (N′A+N′B)/(NA+NB),
where N′A and N′B are the numbers of nodes remaining in networks GA and GB, respectively, after the network attack.
Note that by the definition of interdependent networks, N′A = N′B.

Multiplex Networks. For multiplex networks, we simulated a layer node-based attack similar to that in [10]. We
removed N × ϕA nodes from GA and N × ϕB nodes from GB in the descending order of their degree. Subsequently,
we removed nodes that were not part of the largest components of GA and GB. Finally, we calculated the size of
the mutually connected giant component (MCGC), which is a common measure of the robustness of multiplex net-
works [3, 4, 10]. Note that the MCGC is a set of connected multiplex nodes [10], which are regarded as connected
if they have links on at least one layer [10]. We used the normalized size R of the MCGC, which is defined as the
number of nodes belonging to the MCGC normalized by the number of nodes N in the network.

For each network and link-addition strategy, we performed 10 independent simulations of link addition and node
removal. Subsequently, we obtained the average value of R from 100 independent simulation runs for each link-
addition strategy. Although other possible measures can be used for evaluating the robustness of networks (e.g., [30]),
we used the R values for evaluating the robustness of multilayer networks following the existing studies regarding link
addition for multilayer networks [20, 17].

5. Results and Discussion

5.1. Robustness of Interdependent Networks

To evaluate the effectiveness of the link-addition strategies for interdependent networks, we investigated the ro-
bustness of interdependent networks when using each strategy. Figure 1 shows the relative number R of remaining
nodes versus the fraction ϕA of removed nodes. We used fa = 0.10, which corresponds to a low budget of links to be
added. For comparison purposes, the graphs in Fig. 1 include results with no link addition (denoted as NONE).

Figure 1 shows that the existing link-addition strategies and our extensions to them (i.e., LD IDD, LDP IDD,
and LDS IDD) improve the robustness of interdependent networks against degree-based attacks. Among the seven
strategies, LD, LD IDD, LDP IDD, and LDS IDD are the most effective. Although RIDD and LIDD have been
reported as being more effective than LD and RA against random node failures [17], the present results suggest that
LD is more effective than RIDD and LIDD against targeted attacks. Comparing LD with the three extensions that
use node degree and IDD, the extensions achieve higher R values than LD in some cases (e.g., BA–BA and CE–
BA networks). However, the differences are slight. The difference among different networks shows that BA–BA,
BA–ER, and CE–BA networks are less robust than other networks even if link-addition strategies are applied. BA
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Figure 1: Fraction R of nodes remaining after a degree-based attack versus fraction of nodes removed from GA for fa = 0.10, and N = 1, 000
(interdependent networks).

networks have a power-law degree distribution, and such networks are shown to less robust against degree-based
targeted attacks [4, 5]. Therefore, interdependent networks composed of BA networks tend to be less robust.

Next, we investigate the effectiveness of the strategies when more links are available to be added compared with
the previous results. Figure 2 shows the relative number of remaining nodes versus the fraction ϕA of removed nodes
for fa = 0.30. These results show that LD achieves much higher R values than the other strategies. This suggests that
when many links are to the networks, LD is the best strategy. However, this is surprising given that LD was designed
for single-layer networks; therefore, we investigate the cause in Section 5.3.

Furthermore, we investigate the effectiveness of the link-addition strategies for larger networks. Figure 3 shows
the relative number of remaining nodes versus the fraction ϕA for networks with N = 5, 000 nodes. The parameters
used for network generation were the same as those for generating N = 1, 000 networks. Here, the fraction of added
links fa = 0.10. These results show that overall, similar to the results for N = 1, 000, LD, LD IDD, LDP IDD, and
LDS IDD are relatively effective. This suggests that the network size does not significantly affect the effectiveness of
the link-addition strategies. Degree-based strategies are suggested as a better approach than strategies that consider
only IDD (i.e., RIDD and LIDD). Note that owing to the parameter setting when generating the ER networks, ER
networks with N = 5, 000 are extremely dense; therefore, the results for the ER–ER network are almost the same
regardless of the link addition strategy.

5.2. Robustness of Multiplex Networks
Next, we investigate the effectiveness of the link-addition strategies for multiplex networks. Figure 4 shows the

relative size of MCGC R versus the fraction ϕA of removed nodes, for which we used fa = 0.10 and ϕB = 0.40.
These results indicate that the link-addition strategies improve the robustness of multiplex networks. The R values

when using the link-addition strategies are much higher than those with no link addition. These results indicate that the
link-addition strategies for interdependent networks can also be used to improve the robustness of multiplex networks.
Among the seven strategies, LD, LD IDD, LDP IDD, and LDS IDD are the most effective. The difference among
different networks shows that BA–BA, BA–ER, and CE–BA networks are less robust than other networks. These
tendencies are similar to the results for interdependent networks.
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Figure 2: Fraction R of nodes remaining after a degree-based attack versus the fraction of nodes removed from GA for fa = 0.30, and N = 1, 000
(interdependent networks).

Figure 5 shows the results for fa = 0.20 and ϕB = 0.40, which correspond to more links being available for
addition compared with the previous results. Again, these results demonstrate the effectiveness of LD. Regarding the
results in the previous subsection, LD achieves much higher R values than the other strategies. This suggests that
when many links can be added in multiplex networks, LD is the best option.

We finally investigate the effectiveness of the link-addition strategies for larger multiplex networks. Figure 6 shows
the relative size of MCGC R versus the fraction ϕA of removed nodes, for networks with N = 5, 000 nodes. Here,
fa = 0.10 and ϕB = 0.40 are used. Similarly, these results demonstrate that LD, LD IDD, LDP IDD, and LDS IDD
are relatively effective, and that the network size does not significantly affect the effectiveness of the link-addition
strategies. Note that owing to the parameter setting when generating ER networks, ER networks with N = 5, 000 are
extremely dense; consequently, the R values for the BA–ER, CE–ER, and ER–ER networks are large.

Our main findings can be summarized as follows. 1) Link-addition strategies are effective for improving the
robustness of both interdependent and multiplex networks against targeted node attacks. 2) Among the seven strategies
used herein, LD, LD IDD, LDP IDD, and LDS IDD are the most effective. 3) When many links can be added to the
networks, LD (which was designed for single-layer networks) is unexpectedly effective for both interdependent and
multiplex networks.

5.3. Discussion
This subsection discusses our experimental results. First, we consider why some strategies are better than others.

A network attack may remove links that are added by one of the link-addition strategies. If such an attack removes
many such added links, then the latter are ineffective for improving network robustness. Degree-based attacks remove
high-degree nodes. Therefore, links added to high-degree nodes tend to be ineffective. By contrast, links added to low-
degree nodes tend not to be removed by the attacks. This may be why low-degree based strategies (i.e., LD, LD IDD,
LDP IDD, and LDS IDD) are effective than others. To confirm the hypothesis above, we compare the numbers of
such ineffective links added by the link-addition strategies. Figures 7–10 show the number of links added by each
link-addition strategy that are then deleted by the network attack divided by the number of added links. Hereinafter,
we only show the results for N = 1, 000.

7



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

R

φA

NONE
RA
LD

RIDD
LIDD

LDP_IDD
LDS_IDD

LD_IDD

(a) BA–BA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

R

φA

(b) BA–ER

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

R

φA

(c) CE–BA

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

R

φA

(d) CE–CE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

R

φA

(e) CE–ER

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

R

φA

(f) ER–ER

Figure 3: Fraction R of nodes remaining after a degree-based attack versus the fraction of nodes removed from GA for fa = 0.10, and N = 5, 000
(interdependent networks).

These figures show that the fractions of deleted links with LD, LD IDD, LDS IDD, and LDP IDD are smaller
than those with other strategies. These results confirm our hypothesis. In particular, when fa is large, the fractions of
deleted links with LD are the smallest. This is why LD is more effective than the other strategies, particularly when
fa is large. This result also suggests that the effectiveness of the selected link-addition strategy depends on the attack
strategy, and that it is important to investigate the effectiveness of link-addition strategies for different attack strategies
in the future.

Next, we examine the difference and similarity between the results of interdependent and multiplex networks.
Focusing on the difference between interdependent and multiplex networks, link-addition strategies are more effective
in multiplex networks than in interdependent networks under the similar attack strength. For instance, Fig. 1(b) shows
that in the BA–ER multiplex network when ϕA = 0.3, LD achieves approximately R = 0.4, which is approximately 0.4
higher than that without using link-addition strategies. By contrast, Fig. 4(b) shows that in the BA–ER interdependent
network when ϕA = 0.3, LD achieves approximately R = 0. This suggests that under similar sizes of network
attacks, link-addition strategies are more effective for multiplex networks than for interdependent networks. This is
because in multiplex networks, multiplex nodes are regarded as connected if they have links on at least one layer.
Therefore, as shown in Figs. 7–10, multiplex networks have considerably fewer ineffective links than interdependent
networks. Focusing on the similarity between interdependent and multiplex networks, link-addition strategies effective
for interdependent networks are also effective for multiplex networks (and vice versa). As discussed above, low-
degree based strategies have fewer ineffective links both in interdependent and multiplex networks, which results in
their effectiveness.

6. Conclusions and Future Work

We herein provided an extensive analysis of the effectiveness of link-addition strategies for improving the robust-
ness of both interdependent and multiplex networks against targeted node attacks. We demonstrated that link-addition
strategies are effective for both interdependent and multiplex networks. Moreover, the link-addition strategies for
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Figure 4: Relative size of MCGC R under a degree-based attack versus fraction of nodes removed from GA for fa = 0.10, ϕB = 0.40, and N = 1, 000
(multiplex networks).

multiplex networks were similarly (or even more) effective than those for interdependent networks. Several studies
regarding link-addition strategies for interdependent networks have been performed; however, those for multiplex
networks are few. Our results suggest that the findings regarding interdependent networks are applicable to multiplex
networks. Furthermore, we demonstrated that the LD strategy, which was designed for single-layer networks, was
unexpectedly effective. Strategies combining node degree and IDD (i.e., LD IDD, LDP IDD, and LDS IDD) were ef-
fective when the budget for link addition was limited (i.e., the number of added links is small). Overall, degree-based
strategies were shown to be effective against targeted attacks.

We recognized the limitations in this study, and they suggest directions for future work. First, to fully understand
the effectiveness of link-addition strategies for improving the robustness of multilayer networks, theoretical analyses
should be provided. This paper provides numerical results; however, in future work, we plan to provide analytical
results. Next, we used only strategies involving the addition of links between layer nodes (i.e., we only used intralink
addition strategies). By contrast, strategies involving the addition of interlayer links exist [31, 32]. By combining
intralink and interlayer link addition strategies, the robustness of multilayer networks can be improved with lower
costs than by using only intralink addition strategies. Additionally, it is important to study network recovery after
a network failure. Network recovery problems have been studied recently [33, 34, 35, 36, 37]; furthermore, the
effectiveness of link-addition strategies to such problems can be investigated in future work. Finally, the effectiveness
of link-addition strategies against attack strategies other than degree-based attacks should be investigated.
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Figure 7: Fraction of added links that are subsequently deleted by a degree-based attack versus fraction of nodes removed from GA (interdependent
network, fa = 0.10), N = 1, 000.
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Figure 8: Fraction of added links that are subsequently deleted by a degree-based attack versus fraction of nodes removed from GA (interdependent
network, fa = 0.30, N = 1, 000).
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Figure 9: Fraction of added links that are subsequently deleted by a degree-based attack versus fraction of nodes removed from GA (multiplex
network, fa = 0.10, ϕB = 0.40, N = 1, 000).
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Figure 10: Fraction of added links that are subsequently deleted by a degree-based attack versus fraction of nodes removed from GA (multiplex
network, fa = 0.20, ϕB = 0.40, N = 1, 000).
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